早教吧作业答案频道 -->英语-->
一条美国的微积分的数学问题Findanequationoftheplane.Theplanethatpassesthroughthepoint(−2,3,3)andcontainsthelineofintersectionoftheplanesx+y−z=3and4x−y+5z=5如果写过程,我就奖赏分
题目详情
一条美国的微积分的数学问题
Find an equation of the plane.
The plane that passes through the point
(−2,3,3)
and contains the line of intersection of the planes
x + y − z = 3 and 4x − y + 5z = 5
如果写过程,我就奖赏分吧!
Find an equation of the plane.
The plane that passes through the point
(−2,3,3)
and contains the line of intersection of the planes
x + y − z = 3 and 4x − y + 5z = 5
如果写过程,我就奖赏分吧!
▼优质解答
答案和解析
Solution:
The nomal vector of plane L₁x + y - z = 3 is (1,1,-1)
The nomal vector of plane L₂4x + y - z = 3 is (4,1,-1)
Therefore,the directional vector N of the intersection of L₁and L₂
= (1,1,-1)×(4,-1,5) = (4,-9,-5)
We can find a point on the line of intersection of L₁and L₂:
Let x = 0,we have y - z = 3,and y - 5z = -5,solution is z = 2,and y = 5
Hence,point P(0,5,2) is a point on the line of intersection.
A is a given point (-2,3,3),vector AP = (2,2,-1)
The vector of the normal direction of the plane required
= N cross times AP
= (4,-9,-5)×(2,2,-1) = (19,-6,26)
Sub (19,-6,26) and the given point (-2,3,3) into ax + by + cz = d,we obtain
- 38 - 18 + 78 = d,d = 22
∴The equation of the plane required is 19x - 6y + 26z = 22 (Ans)
The nomal vector of plane L₁x + y - z = 3 is (1,1,-1)
The nomal vector of plane L₂4x + y - z = 3 is (4,1,-1)
Therefore,the directional vector N of the intersection of L₁and L₂
= (1,1,-1)×(4,-1,5) = (4,-9,-5)
We can find a point on the line of intersection of L₁and L₂:
Let x = 0,we have y - z = 3,and y - 5z = -5,solution is z = 2,and y = 5
Hence,point P(0,5,2) is a point on the line of intersection.
A is a given point (-2,3,3),vector AP = (2,2,-1)
The vector of the normal direction of the plane required
= N cross times AP
= (4,-9,-5)×(2,2,-1) = (19,-6,26)
Sub (19,-6,26) and the given point (-2,3,3) into ax + by + cz = d,we obtain
- 38 - 18 + 78 = d,d = 22
∴The equation of the plane required is 19x - 6y + 26z = 22 (Ans)
看了 一条美国的微积分的数学问题F...的网友还看了以下:
若f(x)=x^2+bx+c对任意t都有f(2+t)=f(2-t),则f(1),f(2),f(4) 2020-04-08 …
导数下方的面积问题导数下方的面积与原函数到底是什么关系?是相等吗?因为一个导数可以对应很多函数.f 2020-06-10 …
如果函数f(x)=x^2+bx+c对任意t都有f(2+t)=f(2-t) 2020-07-13 …
matlab里面求微分方程dsolve('Df=exp(-i*s*t)*f^2+sin(f)',' 2020-07-23 …
高等数学的线微分和面微分L是闭曲线,函数f(x,y)在L上对弧长的曲线积分为∮f(x,y)ds那么 2020-07-31 …
变上限积分求导f(x)=∫(0,x)(x-t)^2*f(t)dt如何对x求导?原题:函数f(x)满 2020-07-31 …
对于积分上限函数∫(a,t)f(y)dy,知道被积函数是f(t).那么对于∫(a,t)f(x+y) 2020-08-02 …
2道积分题1.设函数f(x)在(0,+∞)内连续,且f(1)=5/2,且对所有的x,t∈R,满足条件 2020-11-15 …
导数下方的面积问题导数下方的面积与原函数到底是什么关系?因为一个导数可以对应很多函数.f(t)=2t 2020-12-26 …
一个小小的数学函数问题如果函数f(x)=x^2+bx+c对任意实数t,都有f(2+t)=f(2-t) 2021-02-01 …