早教吧作业答案频道 -->数学-->
已知函数f(x)=4x+a•2x+1+4(1)当a=1时,求函数f(x)的值域;(2)若关于x的方程f(x)=0有两个大于0的实根,求a的取值范围;(3)当x∈[1,2]时,求函数f(x)的最小值.
题目详情
已知函数f(x)=4x+a•2x+1+4
(1)当a=1时,求函数f(x)的值域;
(2)若关于x的方程f(x)=0有两个大于0的实根,求a的取值范围;
(3)当x∈[1,2]时,求函数f(x)的最小值.
(1)当a=1时,求函数f(x)的值域;
(2)若关于x的方程f(x)=0有两个大于0的实根,求a的取值范围;
(3)当x∈[1,2]时,求函数f(x)的最小值.
▼优质解答
答案和解析
(1)设t=2x>0,则y=g(t)=t2+2at+4,
当a=1时,y=t2+2t+4=(t+1)2+3,对称轴为t=-1,开口向上.
∴g(t)在(0,+∞)上单调递增,∴g(t)>g(0)=4.
∴函数f(x)值域为(4,+∞).
(2)由x>0得t>1.
∴方程f(x)=0有两个大于0的实根等价于方程g(t)=t2+2at+4=0有两个大于1的实根,
则需
解得
,
∴−
<a≤−2.
(3)由x∈[1,2]得t∈[2,4],g(t)=(t+a)2+4-a2.
①当-a≥4,即a≤-4时,g(t)在[2,4]上单调递减,
∴g(t)min=g(4)=20+8a;
②当2<-a<4,-4<a<-2时,g(t)min=g(−a)=4−a2;
③当-a≤2即a≥-2时,g(t)在[2,4]上单调递增,
∴g(t)min=g(2)=8+4a.
当a=1时,y=t2+2t+4=(t+1)2+3,对称轴为t=-1,开口向上.
∴g(t)在(0,+∞)上单调递增,∴g(t)>g(0)=4.
∴函数f(x)值域为(4,+∞).
(2)由x>0得t>1.
∴方程f(x)=0有两个大于0的实根等价于方程g(t)=t2+2at+4=0有两个大于1的实根,
则需
|
|
∴−
5 |
2 |
(3)由x∈[1,2]得t∈[2,4],g(t)=(t+a)2+4-a2.
①当-a≥4,即a≤-4时,g(t)在[2,4]上单调递减,
∴g(t)min=g(4)=20+8a;
②当2<-a<4,-4<a<-2时,g(t)min=g(−a)=4−a2;
③当-a≤2即a≥-2时,g(t)在[2,4]上单调递增,
∴g(t)min=g(2)=8+4a.
看了 已知函数f(x)=4x+a•...的网友还看了以下:
已知函数f(x)=1/2(2^x+2^-x),求f(x)的定义域,值域,并确定函数的奇偶性,单调性 2020-04-05 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
怎么判断三角函数的定义域如y=2sin(2x+3/π)+5.我们老师说先求出五点再来解,可是我还是 2020-06-08 …
已知函数y=f(x)的定义域为[-2,4],则f(x+1)的定义域为已知y=f(x+2)的定义域为 2020-06-25 …
高一复合函数定义域1.已知f(x)的定义域是[1,2],求f(x)的定义域[2,3]2.已知f(x 2020-07-30 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
1.下列函数中哪个与函数y=x是同一个函数(1)y=(根号x)^2(2)y=x^2/x(3)y=3根 2020-11-01 …
今年哥哥的年龄是妹妹的2倍,2年前哥哥的年龄是妹妹的3倍,求2年前哥哥和妹妹的年龄,设2年前哥哥x岁 2020-11-08 …
仿照以下补充推理计算出1+5+5的2次方+5的三次方+…+5的2011次方为了求1+2+2的2次方+ 2020-11-21 …
已知函数y=loga(1-a^(x^2-4x))PS:1.求函数的定义域2.求函数的值域已知函数y= 2020-12-08 …