早教吧作业答案频道 -->数学-->
已知函数f(x)=4x+a•2x+1+4(1)当a=1时,求函数f(x)的值域;(2)若关于x的方程f(x)=0有两个大于0的实根,求a的取值范围;(3)当x∈[1,2]时,求函数f(x)的最小值.
题目详情
已知函数f(x)=4x+a•2x+1+4
(1)当a=1时,求函数f(x)的值域;
(2)若关于x的方程f(x)=0有两个大于0的实根,求a的取值范围;
(3)当x∈[1,2]时,求函数f(x)的最小值.
(1)当a=1时,求函数f(x)的值域;
(2)若关于x的方程f(x)=0有两个大于0的实根,求a的取值范围;
(3)当x∈[1,2]时,求函数f(x)的最小值.
▼优质解答
答案和解析
(1)设t=2x>0,则y=g(t)=t2+2at+4,
当a=1时,y=t2+2t+4=(t+1)2+3,对称轴为t=-1,开口向上.
∴g(t)在(0,+∞)上单调递增,∴g(t)>g(0)=4.
∴函数f(x)值域为(4,+∞).
(2)由x>0得t>1.
∴方程f(x)=0有两个大于0的实根等价于方程g(t)=t2+2at+4=0有两个大于1的实根,
则需
解得
,
∴−
<a≤−2.
(3)由x∈[1,2]得t∈[2,4],g(t)=(t+a)2+4-a2.
①当-a≥4,即a≤-4时,g(t)在[2,4]上单调递减,
∴g(t)min=g(4)=20+8a;
②当2<-a<4,-4<a<-2时,g(t)min=g(−a)=4−a2;
③当-a≤2即a≥-2时,g(t)在[2,4]上单调递增,
∴g(t)min=g(2)=8+4a.
当a=1时,y=t2+2t+4=(t+1)2+3,对称轴为t=-1,开口向上.
∴g(t)在(0,+∞)上单调递增,∴g(t)>g(0)=4.
∴函数f(x)值域为(4,+∞).
(2)由x>0得t>1.
∴方程f(x)=0有两个大于0的实根等价于方程g(t)=t2+2at+4=0有两个大于1的实根,
则需
|
|
∴−
5 |
2 |
(3)由x∈[1,2]得t∈[2,4],g(t)=(t+a)2+4-a2.
①当-a≥4,即a≤-4时,g(t)在[2,4]上单调递减,
∴g(t)min=g(4)=20+8a;
②当2<-a<4,-4<a<-2时,g(t)min=g(−a)=4−a2;
③当-a≤2即a≥-2时,g(t)在[2,4]上单调递增,
∴g(t)min=g(2)=8+4a.
看了 已知函数f(x)=4x+a•...的网友还看了以下:
f(x)=x^λ*cos(1/x) x≠0,f(x)=0,x=0,其导数在x=0处连续 λ取值范围 2020-05-17 …
设函数f(x)=√x^2+1.—ax,其中a>0,求a的取值范围,使函数f(x)在区间[0,+∞) 2020-06-20 …
对于函数f(x)=log1/2(ax^2-2x+4)(a属于R)若f(x)的值域为(-∞,1],求 2020-06-27 …
数学导数题——①直线y=a与函数y=x³-3x的图像有相异的三个交点,则a的取值范围是()②已知函 2020-07-18 …
已知函数f(x)=1/3x^3-a/2x^2+x在[1,正无穷)上为单调递增函数,求实数a的取值范 2020-07-27 …
函数f(x)=x^3+mx^2+(m+4/3)x+6在R上有极值,则m的取值范围为?函数f(x)=x 2020-12-08 …
二次函数..已知f(x)是二次函数若f(x)=0,且f(x)+x+1=f(x+1),试求f(x)的表 2020-12-08 …
已知函数f(x)=根号下(x2-2x-8)的定义域为A,g(x)=1/根号下1减(x-a)的绝对值的 2020-12-08 …
定义函数取值范围[a,b]如果值域在[a,b]则称函数在[a,b]上是保值函数f(x)=x^2在[0 2020-12-31 …
两个函数值相乘,值域给定,如f(x)f(x+1)>=1,这类题怎么做?比如给定一个函数f(x)=a/ 2021-02-18 …