函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0D.a>0,b>0,c>0,d<0
函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )
A. a>0,b<0,c>0,d>0
B. a>0,b<0,c<0,d>0
C. a<0,b<0,c<0,d>0
D. a>0,b>0,c>0,d<0
当x→+∞时,y→+∞,∴a>0,排除C,
函数的导数f′(x)=3ax2+2bx+c,
则f′(x)=0有两个不同的正实根,
则x1+x2=-
2b |
3a |
c |
3a |
∴b<0,c>0,
方法2:f′(x)=3ax2+2bx+c,
由图象知当当x<x1时函数递增,当x1<x<x2时函数递减,则f′(x)对应的图象开口向上,
则a>0,且x1+x2=-
2b |
3a |
c |
3a |
∴b<0,c>0,
故选:A
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
函数在0到1的闭区间内二阶导数大于0选择:a.f'(1)>f'(0)>f(1)—f(0)b.f'( 2020-05-16 …
函数f(x)=ax^2+bx+c(a不等于0),f(x)的导函数是f'(x),集合A={x|f(x 2020-05-16 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …
若函数f(x)对任何x均满足f(1+x)=2f(x),且f(0)=1,f'(0)=c(c为已知常数 2020-07-16 …
设f(x)在0,1上满足f''(x)>0,则必有A.f'(1)>f'(0)>f(1)-f(0)B. 2020-07-26 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
国际贸易术语F组C组D组后面跟港口名字有点不明白,还有请详细讲下F和C组的深层含义.谢谢例如有题,我 2020-11-04 …
设对任意实数x,y有[f(x)+f(y)]/2=0,f(0)=c,证明f(x)恒为c设对任意实数x, 2020-11-10 …