早教吧作业答案频道 -->其他-->
(2014•威海一模)设函数f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.(Ⅰ)求函数f(x),g(x)的解析式;(Ⅱ)求函数f(x)在[t,t+1](t>-3)上
题目详情
(2014•威海一模)设函数f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,已知它们在x=0处有相同的切线.
(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)求函数f(x)在[t,t+1](t>-3)上的最小值;
(Ⅲ)若对∀x≥-2,kf(x)≥g(x)恒成立,求实数k的取值范围.
(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)求函数f(x)在[t,t+1](t>-3)上的最小值;
(Ⅲ)若对∀x≥-2,kf(x)≥g(x)恒成立,求实数k的取值范围.
▼优质解答
答案和解析
(Ⅰ) f'(x)=aex(x+2),g'(x)=2x+b----------------------(1分)
由题意,两函数在x=0处有相同的切线.
∴f'(0)=2a,g'(0)=b,
∴2a=b,f(0)=a=g(0)=2,∴a=2,b=4,
∴f(x)=2ex(x+1),g(x)=x2+4x+2.----------------------(3分)
(Ⅱ) f'(x)=2ex(x+2),由f'(x)>0得x>-2,由f'(x)<0得x<-2,
∴f(x)在(-2,+∞)单调递增,在(-∞,-2)单调递减.----------------------(4分)
∵t>-3,∴t+1>-2
①当-3<t<-2时,f(x)在[t,-2]单调递减,[-2,t+1]单调递增,
∴f(x)min=f(−2)=−2e−2.----------------------(5分)
②当t≥-2时,f(x)在[t,t+1]单调递增,∴f(x)min=f(t)=2et(t+1);
∴f(x)=
&2et(t+1) (t≥−2)----------------------(6分)
(Ⅲ)令F(x)=kf(x)-g(x)=2kex(x+1)-x2-4x-2,
由题意当x≥-2,F(x)min≥0----------------------(7分)
∵∀x≥-2,kf(x)≥g(x)恒成立,∴F(0)=2k-2≥0,∴k≥1----------------------(8分)
F'(x)=2kex(x+1)+2kex-2x-4=2(x+2)(kex-1),----------------------(9分)
∵x≥-2,由F'(x)>0得ex>
,∴x>ln
;由F'(x)<0得x<ln
∴F(x)在(−∞,ln
]单调递减,在[ln
,+∞)单调递增----------------------(10分)
①当ln
<−2,即k>e2时,F(x)在[-2,+∞)单调递增,F(x)min=F(−2)=−2ke−2+2=
(e2−k)<0,不满足F(x)min≥0.----------------(11分)
②当ln
=−2,即k=e2时,由①知,F(x)min=F(−2)=
(e2−k)=0,满足F(x)min≥0.-------(12分)
③当ln
>−2,即1≤k<e2时,F(x)在
由题意,两函数在x=0处有相同的切线.
∴f'(0)=2a,g'(0)=b,
∴2a=b,f(0)=a=g(0)=2,∴a=2,b=4,
∴f(x)=2ex(x+1),g(x)=x2+4x+2.----------------------(3分)
(Ⅱ) f'(x)=2ex(x+2),由f'(x)>0得x>-2,由f'(x)<0得x<-2,
∴f(x)在(-2,+∞)单调递增,在(-∞,-2)单调递减.----------------------(4分)
∵t>-3,∴t+1>-2
①当-3<t<-2时,f(x)在[t,-2]单调递减,[-2,t+1]单调递增,
∴f(x)min=f(−2)=−2e−2.----------------------(5分)
②当t≥-2时,f(x)在[t,t+1]单调递增,∴f(x)min=f(t)=2et(t+1);
∴f(x)=
|
(Ⅲ)令F(x)=kf(x)-g(x)=2kex(x+1)-x2-4x-2,
由题意当x≥-2,F(x)min≥0----------------------(7分)
∵∀x≥-2,kf(x)≥g(x)恒成立,∴F(0)=2k-2≥0,∴k≥1----------------------(8分)
F'(x)=2kex(x+1)+2kex-2x-4=2(x+2)(kex-1),----------------------(9分)
∵x≥-2,由F'(x)>0得ex>
1 |
k |
1 |
k |
1 |
k |
∴F(x)在(−∞,ln
1 |
k |
1 |
k |
①当ln
1 |
k |
2 |
e2 |
②当ln
1 |
k |
2 |
e2 |
③当ln
1 |
k |
作业帮用户
2017-11-01
看了 (2014•威海一模)设函数...的网友还看了以下:
已知三个关于x的一元二次方程ax^2+bx+c=0,bx^2+cx+a=0,cx^2+ax+b=0 2020-05-15 …
已知二次不等式ax²+bx+c>0的解为x>2或x<-3,求ax²-bx+c<0的解若不等式3x² 2020-05-16 …
已知当x=2时,ax²+bx+2的值为9,那么当x=-2时,求ax³+bx+5的值 方 已知当x= 2020-05-16 …
(2014•威海一模)设函数f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2 2020-06-08 …
若不等式ax^2+bx+2>0的解集是(-1/2,1/3),则a+b的值为不等式ax²+bx+2> 2020-07-07 …
若4x^4-ax^3+bx^2-40x+16是完全平方式,ab值为多少?答案-180或820我算的 2020-07-17 …
若4x^4-ax^3+bx^2-40x+16是完全平方式,ab值为多少?答案-180或820我算的 2020-07-22 …
已知二次三项式ax2+bx+c(a>0)(1)当c<0时,求函数y=-2|ax2+bx+c|-1的 2020-07-31 …
初中因式分解几道(过程PLEASE)可以来自网络但是要求准确5m^2(a+b)-a-b(ax+by) 2020-11-01 …
二次函数y=ax2+bx+c的图象如图所示.有下列结论:①b2-4ac<0;②ab>0;③a-b+c 2020-11-01 …