早教吧作业答案频道 -->数学-->
基本公式(1)1+2+3+…+n=n×(n+1)2(2)12+22+32+…+n2=n×(n+1)×(2n+1)6(3)13+23+33+…+n3=(1+2+3+…+n)2.运用上面的公式计算1+2+3+4+5+6+7+8+9+10=12+22+32+42+52+62+72+82+92+102=13+23+33+43+53+63+73+83+93+103=100+121+144+169+
题目详情
基本公式
(1)1+2+3+…+n=
(2)12+22+32+…+n2=
(3)13+23+33+…+n3=(1+2+3+…+n)2.
运用上面的公式计算
1+2+3+4+5+6+7+8+9+10=
12+22+32+42+52+62+72+82+92+102=
13+23+33+43+53+63+73+83+93+103=
100+121+144+169+…+400=
13+33+53+73+93=
(1)1+2+3+…+n=
| n×(n+1) |
| 2 |
(2)12+22+32+…+n2=
| n×(n+1)×(2n+1) |
| 6 |
(3)13+23+33+…+n3=(1+2+3+…+n)2.
运用上面的公式计算
1+2+3+4+5+6+7+8+9+10=
12+22+32+42+52+62+72+82+92+102=
13+23+33+43+53+63+73+83+93+103=
100+121+144+169+…+400=
13+33+53+73+93=
▼优质解答
答案和解析
①1+2+3+4+5+6+7+8+9+10,
=
,
=
,
=55;
②12+22+32+42+52+62+72+82+92+102,
=
,
=
,
=
,
=385;
③13+23+33+43+53+63+73+83+93+103,
=(1+2+3…10)2,
=(
)2,
=(
)2,
=552,
=3025;
④100+121+144+169+…+400,
=102+112+122+…+202,
=(12+22+32+42+…202)-(12+22+32+42+52+62+72+82+92),
=
-
,
=
-
,
=
-
,
=2870-285,
=2585;
⑤13+33+53+73+93,
=(13+23+33+43+53+63+73+83+93)-(23+43+63+83),
=(1+2+…+9)2-(8+64+216+512),
=(
)2-[(8+512)+(64+216)],
=(
)2-(520+280),
=452-800,
=2025-800,
=1225.
=
| 10×(10+1) |
| 2 |
=
| 10×11 |
| 2 |
=55;
②12+22+32+42+52+62+72+82+92+102,
=
| 10×(10+1)×(2×10+1) |
| 6 |
=
| 10×11×21 |
| 6 |
=
| 2310 |
| 6 |
=385;
③13+23+33+43+53+63+73+83+93+103,
=(1+2+3…10)2,
=(
| 10×(10+1) |
| 2 |
=(
| 10×11 |
| 2 |
=552,
=3025;
④100+121+144+169+…+400,
=102+112+122+…+202,
=(12+22+32+42+…202)-(12+22+32+42+52+62+72+82+92),
=
| 20×(20+1)×(2×20+1) |
| 6 |
| 9×(9+1)×(2×9+1) |
| 6 |
=
| 20×21×41 |
| 6 |
| 9×10×19 |
| 6 |
=
| 17220 |
| 6 |
| 1710 |
| 6 |
=2870-285,
=2585;
⑤13+33+53+73+93,
=(13+23+33+43+53+63+73+83+93)-(23+43+63+83),
=(1+2+…+9)2-(8+64+216+512),
=(
| 9×(9+1) |
| 2 |
=(
| 9×10 |
| 2 |
=452-800,
=2025-800,
=1225.
看了 基本公式(1)1+2+3+…...的网友还看了以下:
8年级数学题:3的n次方+m能被13整除,证明3的n+3次方能被13整除.急用,谢谢刚知道:3^( 2020-05-15 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
观察下列等式:1×2=13×1×2×3,1×2+2×3=13×2×3×4,1×2+2×3+3×4= 2020-06-03 …
观察下列等式:1×2=13×1×2×3,1×2+2×3=13×2×3×4,1×2+2×3+3×4= 2020-06-05 …
基本公式(1)1+2+3+…+n=n×(n+1)2(2)12+22+32+…+n2=n×(n+1) 2020-06-08 …
求下列各式中n的值1.Cn5+Cn6=Cn+13(n在下数字在上n+1在下3在上)2.Cn+1n- 2020-07-12 …
n为非0自然数,试证n^13n定能被2730整除.2730=2*3*5*7*13,n^13-n=n 2020-07-22 …
观察下列等式:1×2=13×1×2×3,1×2+2×3=13×2×3×4,1×2+2×3+3×4= 2020-07-24 …
求教一个数学合情推理的问题通过计算可得下列等式2^2-1^2=2*1+13^2-2^2=2*2+14 2020-11-21 …
一道数学问题下列说法不正确的是().A.数列1,1,1,...是无穷数列.B.数列1,2,3,... 2020-12-24 …