早教吧作业答案频道 -->其他-->
操作探究:数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于
题目详情
操作探究:
数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:

探究:
(1)若∠1=70°,∠MKN=______°;
(2)改变折痕MN位置,△MNK始终是______ 三角形,请说明理由;
应用:
(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为
,此时∠1的大小可以为______°
(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.

数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:

探究:
(1)若∠1=70°,∠MKN=______°;
(2)改变折痕MN位置,△MNK始终是______ 三角形,请说明理由;
应用:
(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为
1 |
2 |
(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.

▼优质解答
答案和解析
(1)如图1,
∵四边形ABCD是矩形,
∴AM∥DN.
∴∠KNM=∠1.
∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°,
∴∠MKN=40°.
故答案为:40;

(2)等腰,
理由:∵AB∥CD,∴∠1=∠MND,
∵将纸片沿MN折叠,∴∠1=∠KMN,∠MND=∠KMN,
∴KM=KN;
故答案为:等腰;
(3)如图2,当△KMN的面积最小值为
时,KN=BC=1,故KN⊥B′M,
∵∠NMB=∠KMN,∠KMB=90°,
∴∠1=∠NMB=45°,同理当将纸条向下折叠时,∠1=∠NMB=135°,
故答案为:45°或135°(只要写出一个即可);
(4)分两种情况:
情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合.
MK=MB=x,则AM=5-x.
由勾股定理得12+(5-x)2=x2,
解得x=2.6.
∴MD=ND=2.6.
S△MNK=S△MND=
×1×2.6=1.3.
情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC.
MK=AK=CK=x,则DK=5-x.
同理可得MK=NK=2.6.
∵MD=1,
∴S△MNK=
×1×2.6=1.3.
△MNK的面积最大值为1.3.

∵四边形ABCD是矩形,
∴AM∥DN.
∴∠KNM=∠1.
∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°,
∴∠MKN=40°.
故答案为:40;

(2)等腰,
理由:∵AB∥CD,∴∠1=∠MND,
∵将纸片沿MN折叠,∴∠1=∠KMN,∠MND=∠KMN,
∴KM=KN;
故答案为:等腰;
(3)如图2,当△KMN的面积最小值为
1 |
2 |
∵∠NMB=∠KMN,∠KMB=90°,
∴∠1=∠NMB=45°,同理当将纸条向下折叠时,∠1=∠NMB=135°,

故答案为:45°或135°(只要写出一个即可);
(4)分两种情况:
情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合.
MK=MB=x,则AM=5-x.
由勾股定理得12+(5-x)2=x2,
解得x=2.6.
∴MD=ND=2.6.

S△MNK=S△MND=
1 |
2 |
情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC.
MK=AK=CK=x,则DK=5-x.
同理可得MK=NK=2.6.
∵MD=1,
∴S△MNK=
1 |
2 |
△MNK的面积最大值为1.3.
看了 操作探究:数学研究课上,老师...的网友还看了以下:
如图,点A的坐标为(-2,0),点B在函数y=4/x(x>0)的图象上,BC⊥x轴于点C,△ABC 2020-05-16 …
如图,已知A、B、C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A、B 2020-06-13 …
如图,在△ABC中,AB=AC,cosB=1/3,BC=2,点D,E,F分别在AC,AB,BC边上 2020-06-27 …
如图,Rt△ABC中,∠ACB=90°,AC=15,BC=20,将边AC沿CE翻折,使点A落在AB 2020-07-16 …
如图,已知点A,B,C是数轴上三点,O为原点,点C对应数为6,BC=4,AB=12.(1)求A,B 2020-07-22 …
如图,已知A、B、C是数轴上的三点,点C表示的数为7,BC=4,AB=16,动点P、Q分别从A、C 2020-07-22 …
如图,数轴上A,B,C三点对应的数分别是a,b,14,满足a=2k-2,且k为最大的负整数,BC= 2020-07-29 …
在数轴上依次有A,B,C三点,其中点A,C表示的数分别为-2,5,且BC=6AB.(1)在数轴上表 2020-07-29 …
如图1,A是在数轴上一定点,A表示的数是5,B是数轴上一动点,B从原点O出发沿数轴正方向运动,速度 2020-07-30 …
如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点 2020-11-11 …