早教吧作业答案频道 -->数学-->
几何法求轨迹已知定点A(0,2)及圆X^2+Y^2=4,过A作MA切圆于A,M为切线上一个动点,MQ切圆于Q,求三角形MAQ的垂心H的轨迹方程.设P(a,b),则M(2b/a,2)切点弦方程AQ是:(2b/a)*x+2*y=4没弄懂现在明白了~谢谢太
题目详情
几何法求轨迹
已知定点A(0,2)及圆X^2+Y^2=4,过A作MA切圆于A,M为切线上一个动点,MQ切圆于Q,求三角形MAQ的垂心H的轨迹方程.
设P(a,b),则M(2b/a,2)
切点弦方程AQ是: (2b/a)*x+2*y=4
没弄懂
现在明白了~谢谢太白+MIANJI12
已知定点A(0,2)及圆X^2+Y^2=4,过A作MA切圆于A,M为切线上一个动点,MQ切圆于Q,求三角形MAQ的垂心H的轨迹方程.
设P(a,b),则M(2b/a,2)
切点弦方程AQ是: (2b/a)*x+2*y=4
没弄懂
现在明白了~谢谢太白+MIANJI12
▼优质解答
答案和解析
怎么忽然多了个P点?是不是H点?
设点M(a ,2)
那么直线OM所在的方程为:y=2x/a
且有OM⊥AQ(用几何知识)
由切点弦方程得到直线AQ所在的直线方程为:ax+2y=4
将直线方程代入圆的方程,消去y,并整理得:
(1+a^2/4)x^2-2ax=0
由韦达定理可以得出:x1+x2=2a/(1+a^2/4)
已知直线与圆的一个交点为A(0,2)
所以另一个交点Q的横坐标即为2a/(1+a^2/4)
经过点P作AM上的高,垂足为N,即QN⊥AM
QN与OM的交点即为垂心H
又因为直线AM平行于x轴,所以用点Q的横坐标就可写出QN的方程:
x=2a/(1+a^2/4)
联立两条直线方程,代入x=2a/(1+a^2/4),即可得出点H的轨迹方程
和上面那位老兄说的一样.
设点M(a ,2)
那么直线OM所在的方程为:y=2x/a
且有OM⊥AQ(用几何知识)
由切点弦方程得到直线AQ所在的直线方程为:ax+2y=4
将直线方程代入圆的方程,消去y,并整理得:
(1+a^2/4)x^2-2ax=0
由韦达定理可以得出:x1+x2=2a/(1+a^2/4)
已知直线与圆的一个交点为A(0,2)
所以另一个交点Q的横坐标即为2a/(1+a^2/4)
经过点P作AM上的高,垂足为N,即QN⊥AM
QN与OM的交点即为垂心H
又因为直线AM平行于x轴,所以用点Q的横坐标就可写出QN的方程:
x=2a/(1+a^2/4)
联立两条直线方程,代入x=2a/(1+a^2/4),即可得出点H的轨迹方程
和上面那位老兄说的一样.
看了 几何法求轨迹已知定点A(0,...的网友还看了以下:
设P、Q为两个非空实数集合,定义集合P+Q={a+b│a∈P,b∈Q}.若P={0,2,5},Q= 2020-04-06 …
正余弦综合应用1.在三角形ABC中,a,b,c分别为三个内角A,B,C所对的边,两个向量P=(a+ 2020-06-03 …
小提琴上A弦上的RE这个音,用一个三指按弦和三个手指都放在各自位置上按弦音一样吗?小提琴上A弦上的 2020-07-11 …
设一组初始记录关键字序列为(Q,H,C,Y,P,A,M,S,R,D,F,X),则按字母升序的第一趟 2020-07-17 …
(1)a^2-2a-1=0,(a-1)/(a+1)=pa+q,求p,q的值;(2)2a^2-3a- 2020-07-31 …
1.下列命题中假命题是:()A.若P→q则┐P→┐qB.若P→q则┐q→┐PC.若┐P→q则┐q→ 2020-08-03 …
1.下列各组词语中加点的字字音或书写没有错误的一组是()A.擎着(qíng)迄今(qǐ)耐人寻味狼奔 2020-11-07 …
下面有关名著名篇的表述,不正确的两项是A.阿Q的“大团圆”结局表明:阿Q依然是阿Q,辛亥革命没有使他 2020-12-06 …
写出下列“P且Q”,“P或Q“,”非P“,“非Q”的形式,并且判真假?已知命题P:若a>1,则a³> 2020-12-07 …
关于向量,向量究竟是什么啊,总是刚开始似乎懂了一点了,但是一做题,题的解析又把我搞糊涂了,比如说这道 2020-12-18 …