早教吧作业答案频道 -->数学-->
y'=(x+y)的平方,求y通解微分方程的题,再就是(x+y)y'+(x-y)=0
题目详情
y'=(x+y)的平方,求y通解 微分方程的题,再就是(x+y)y'+(x-y)=0
▼优质解答
答案和解析
1.求y'=(x+y)²的通解
令x+y=t,则y'=t'-1
代入原方程,得t'-1=t²
==>t'=t²+1
==>dt/(t²+1)=dx
==>arctant=x+C (C是积分常数)
==>t=tan(x+C)
==>x+y=tan(x+C)
==>y=tan(x+C)-x
故原方程的通解是y=tan(x+C)-x (C是积分常数).
2.求(x+y)y'+x-y=0通解
令x+y=t,则y'=t'-1
代入原方程,得tt'-2t+2x=0.(1)
令x/t=z,则t'=(z-xz')/z²
代入方程(1),得(z-xz')/z²-2+2z=0
==>xz'=z(2z²-2z+1)
==>dz/[z(2z²-2z+1)]=dx/x
==>[1/z+(1/2)/(2z²-2z+1)-(2z-1)/(2z²-2z+1)]dz=dx/x
==>ln│z│+(1/2)arctan(2z-1)-(1/2)ln│2z²-2z+1│=ln│x│+(1/2)ln│C│ (C是积分常数)
==>z²*e^arctan(2z-1)/(2z²-2z+1)=Cx²
==>(x/t)²*e^arctan(2x/t-1)=Cx²(2(x/t)²-2(x/t)+1) (用x/t=z代换)
==>e^arctan(2x/t-1)=C(2x²-2xt+t²)
==>e^arctan[(x-y)/(x+y)]=C[2x²-2x(x+y)+(x+y)²]
故原方程的通解是e^arctan[(x-y)/(x+y)]=C[2x²-2x(x+y)+(x+y)²] (C是积分常数).
令x+y=t,则y'=t'-1
代入原方程,得t'-1=t²
==>t'=t²+1
==>dt/(t²+1)=dx
==>arctant=x+C (C是积分常数)
==>t=tan(x+C)
==>x+y=tan(x+C)
==>y=tan(x+C)-x
故原方程的通解是y=tan(x+C)-x (C是积分常数).
2.求(x+y)y'+x-y=0通解
令x+y=t,则y'=t'-1
代入原方程,得tt'-2t+2x=0.(1)
令x/t=z,则t'=(z-xz')/z²
代入方程(1),得(z-xz')/z²-2+2z=0
==>xz'=z(2z²-2z+1)
==>dz/[z(2z²-2z+1)]=dx/x
==>[1/z+(1/2)/(2z²-2z+1)-(2z-1)/(2z²-2z+1)]dz=dx/x
==>ln│z│+(1/2)arctan(2z-1)-(1/2)ln│2z²-2z+1│=ln│x│+(1/2)ln│C│ (C是积分常数)
==>z²*e^arctan(2z-1)/(2z²-2z+1)=Cx²
==>(x/t)²*e^arctan(2x/t-1)=Cx²(2(x/t)²-2(x/t)+1) (用x/t=z代换)
==>e^arctan(2x/t-1)=C(2x²-2xt+t²)
==>e^arctan[(x-y)/(x+y)]=C[2x²-2x(x+y)+(x+y)²]
故原方程的通解是e^arctan[(x-y)/(x+y)]=C[2x²-2x(x+y)+(x+y)²] (C是积分常数).
看了 y'=(x+y)的平方,求y...的网友还看了以下:
对实数X和Y,定义运算符号“*”为X*Y=X^2+Y^2+X+Y,求方程(X+2)*X=26的正整 2020-05-16 …
3道导数题,请求过程或思路,1,在曲线Y=1/(1+X方)上求一点,使得通过该点的切线平行于X轴? 2020-06-03 …
求微分方程的通解求方程xy'+y=y(lnx+lny)的通解 2020-06-25 …
y"+1=e^(x+y)求方程通解 2020-06-27 …
求微分方程的特解y"=1+y'^2求微分方程的通解y"=1+y'^2和y"=(y')^3+y'求微 2020-06-30 …
求下列微分方程的通解,xdy/dx=(yIn^2)y,[(y+1)^2]dy/dx+x^3=0,d 2020-07-19 …
求方程5x-9y=18整数解的通解求方程5x+6y=100的正整数解 2020-07-29 …
1假设y1=xy2=sinx是(y')^2-yy'=1的两个解,那么y=c1x+c2sinx是不是 2020-07-31 …
求方程的特解,e^y+C1=(x+C2)^2是方程y''+(y')^2=2e^(-y)的通解求满足 2020-07-31 …
matlab求解带有未知系数的方程,就好比y=x1*x^3+x2*x+x3*x^2+x4,其中x1, 2020-11-04 …