已知抛物线y2=4x的准线与双曲线x2a2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为()A.6B.62C.3D.2
2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2x2 |
x2 | x2x22a2 |
a2 | a2a22y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 22=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2
B.
C.
D. 2 | 6 |
| 6 |
C.
D. 2 |
| | 6 |
| 6 | 2 |
2 |
D. 2 | 3 |
| 3 |
答案和解析
依题意知抛物线的准线x=-1.代入双曲线方程得
y=±
.
不妨设A(-1,),
∵△FAB是等腰直角三角形,
∴=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a.
不妨设A(-1,
),
∵△FAB是等腰直角三角形,
∴=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a),
∵△FAB是等腰直角三角形,
∴
=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a=2,解得:a=
,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 5 |
| 5 | 5
5 |
5 | 5,
∴c
22=a
22+b
22=
+1=,
∴e=
则双曲线的离心率为:.
故选A. 1 |
1 | 1
5 |
5 | 5+1=
,
∴e=
则双曲线的离心率为:.
故选A. 6 |
6 | 6
5 |
5 | 5,
∴e=
则双曲线的离心率为:.
故选A. | 6 |
| 6 | 6
则双曲线的离心率为:
.
故选A. | 6 |
| 6 | 6.
故选A.
已知X:Y:Z=3:4:5,则(XY-2YZ-XZ)/(2X^2-Y^2+Z^2)=.若A,B都是 2020-04-27 …
1.已知非空集合P满足(1)P包含于{1,2,3,4,5}(2)a∈P,则6-a∈P.那么,符合上 2020-05-21 …
若|a-2|=2-a,则数a在数轴上的对应点在()A.表示数2的点的左侧B.表示数2的点的右侧C. 2020-05-21 …
请教数学问题```求高人指点```同上.1.如果a.b都是正实数,且1/a-1/b=2/(a+b) 2020-06-06 …
一阶线性偏微分方程都是抛物型的吗?书上讲二阶偏微的分类如下:二阶偏微分方程的一般形式为A*Uxx+ 2020-07-09 …
1在平面直角坐标系XY中,已知角A的定点为原点,其始边与X轴正半轴重合,终边过(3.M),且SIN 2020-07-30 …
1.关于x的不等式(a-1)x<a+5和2x<4的解集相同,则a的值为.2.在1kg含40g食盐的 2020-08-03 …
设A是非空数集,0∉A,1∉A,且满足条件:若x∈A,则11-x∈A.若2∈A,则集合A中所含元素个 2020-12-02 …
1.一个跨度和高都为2m的半椭圆形拱门,则能通过该拱门的正方形玻璃板的面积范围?(玻璃板厚度不计,用 2020-12-20 …
判断下列命题的真假并说明理由若,a>b,则a-c>b-c谁能帮我做出来啊判断下列命题的真假并说明理由 2021-01-01 …