已知抛物线y2=4x的准线与双曲线x2a2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为()A.6B.62C.3D.2
2−y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2x2 |
x2 | x2x22a2 |
a2 | a2a22y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2y2=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 22=1交于A、B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率为( )
A.
B.
C.
D. 2
B.
C.
D. 2 | 6 |
| 6 |
C.
D. 2 |
| | 6 |
| 6 | 2 |
2 |
D. 2 | 3 |
| 3 |
答案和解析
依题意知抛物线的准线x=-1.代入双曲线方程得
y=±
.
不妨设A(-1,),
∵△FAB是等腰直角三角形,
∴=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a.
不妨设A(-1,
),
∵△FAB是等腰直角三角形,
∴=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a),
∵△FAB是等腰直角三角形,
∴
=2,解得:a=,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 1−a2 |
| 1−a2 | 1−a
22
a |
a | a=2,解得:a=
,
∴c2=a2+b2=+1=,
∴e=
则双曲线的离心率为:.
故选A. |
| | 5 |
| 5 | 5
5 |
5 | 5,
∴c
22=a
22+b
22=
+1=,
∴e=
则双曲线的离心率为:.
故选A. 1 |
1 | 1
5 |
5 | 5+1=
,
∴e=
则双曲线的离心率为:.
故选A. 6 |
6 | 6
5 |
5 | 5,
∴e=
则双曲线的离心率为:.
故选A. | 6 |
| 6 | 6
则双曲线的离心率为:
.
故选A. | 6 |
| 6 | 6.
故选A.
已知,抛物线y=18(x+1)2-2顶点为A,点B在抛物线上,以AB的斜边作等腰直角三角形,直角顶 2020-05-14 …
已知抛物线y=x2+bx+c与x轴交于点A B其对称轴为直线x=-2顶点为M 且三角形AMB面积= 2020-05-16 …
怎么用Matlab画隐函数的极坐标图像比如sin(x)*2+y+3=0,x从0到2π,y作为极径, 2020-05-16 …
已知圆C:(x-1)平方+(y-2)平方=2,P点为(2,1),过点P作圆C的切线,切点为A.B. 2020-05-23 …
直线系方程求过两直线x-2y+4=0,x+y-2=0的交点,且经过(2,-1)的方程;答案是设x- 2020-06-03 …
(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个 2020-07-25 …
1.平面内有8个点.(1)以其中每2个点为端点的线段共有多少条?(2)以其中每2个点为端点的有1. 2020-07-30 …
正弦曲线y=sinx(x∈(0,2π))上切线斜率等于1/2的点为. 2020-08-02 …
高数平面图形的面积(1)直线y=3x+2,x=0,y=3,y=6所围成平面图形(2)第一象限中y= 2020-08-02 …
参数方程……直线参数方程为x=-1+t,y=t(t为参数),曲线c的极坐标方程是ρ=sinθ/1- 2020-08-02 …