早教吧作业答案频道 -->数学-->
已知偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是()A.f(a+1)≥f(b+2)B.f(a+1)>f(b+2)C.f(a+1)≤f(b+2)D.f(a+1)<f(b+2)
题目详情
已知偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是( )
A. f(a+1)≥f(b+2)
B. f(a+1)>f(b+2)
C. f(a+1)≤f(b+2)
D. f(a+1)<f(b+2)
A. f(a+1)≥f(b+2)
B. f(a+1)>f(b+2)
C. f(a+1)≤f(b+2)
D. f(a+1)<f(b+2)
▼优质解答
答案和解析
∵y=loga|x-b|是偶函数
∴loga|x-b|=loga|-x-b|
∴|x-b|=|-x-b|
∴x2-2bx+b2=x2+2bx+b2
整理得4bx=0,由于x不恒为0,故b=0
由此函数变为y=loga|x|
当x∈(-∞,0)时,由于内层函数是一个减函数,
又偶函数y=loga|x-b|在区间(-∞,0)上递增
故外层函数是减函数,故可得0<a<1
综上得0<a<1,b=0
∴a+1<b+2,而函数f(x)=loga|x-b|在(0,+∞)上单调递减
∴f(a+1)>f(b+2)
故选B.
∴loga|x-b|=loga|-x-b|
∴|x-b|=|-x-b|
∴x2-2bx+b2=x2+2bx+b2
整理得4bx=0,由于x不恒为0,故b=0
由此函数变为y=loga|x|
当x∈(-∞,0)时,由于内层函数是一个减函数,
又偶函数y=loga|x-b|在区间(-∞,0)上递增
故外层函数是减函数,故可得0<a<1
综上得0<a<1,b=0
∴a+1<b+2,而函数f(x)=loga|x-b|在(0,+∞)上单调递减
∴f(a+1)>f(b+2)
故选B.
看了 已知偶函数f(x)=loga...的网友还看了以下:
简单对数函数已知2^a=5^b=10,则1/a+1/b=?(为什么是1?怎么算?) 2020-03-30 …
函数y=f(x)的定义域为[-1,0)U(0,1],其图像上任一点P(x,y)满足x^2+y^2= 2020-04-27 …
已知点(a,b)(a>0,b>0)在函数y=-x+1上,则1/a+1/b的最小值 2020-06-06 …
2.已知a,b都是正实数,函数y=2ae^x+b的图像过(0,2)点,则1/a+1/b的最小值是? 2020-06-10 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A(1)诺2属于A,则在A中还有另 2020-06-29 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
我一做题脑袋都大,1.定义运算a*b={a(a≤b)b(a>b)例如1*2=17*5=7,则1*a 2020-07-09 …
若函数y=ax/b+2/b和函数fx=a^(x+1)+1的图像恒过同一个定点,则1/a+1/b的小 2020-07-23 …
一、已知数集M满足条件:若a∈M,则(1+a)/(1-a)∈M(a≠0,a≠±1)(1)若3∈M, 2020-07-30 …
函数y=1/x与y=x-2图象交点的横坐标分别为a,b,则1/a+1/b的值为不用韦达定理 2020-08-02 …