早教吧作业答案频道 -->其他-->
圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5sinθ)2+(y-5cosθ)2=1(θ∈R),过圆C上任意一点P作圆M的两条切线PE、PF,切点分别为E、F,则PE•PF的最小值是()A.6B.569C.7D.659
题目详情
圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5sinθ)2+(y-5cosθ)2=1(θ∈R),过圆C上任意一点P作圆M的两条切线PE、PF,切点分别为E、F,则
•
的最小值是( )
A.6
B.
C.7
D.
2222
•
的最小值是( )
A.6
B.
C.7
D.
PE PE
PF PF
C.7
D.
56 56 9 9
65 65 9 9
PE |
PF |
A.6
B.
56 |
9 |
C.7
D.
65 |
9 |
PE |
PF |
A.6
B.
56 |
9 |
C.7
D.
65 |
9 |
PE |
PF |
56 |
9 |
C.7
D.
65 |
9 |
56 |
9 |
65 |
9 |
65 |
9 |
▼优质解答
答案和解析
(x-2)22+y22=4的圆心C(2,0),半径等于2,圆M (x-2-5sinθ)22+(y-5cosθ)22=1,
圆心M(2+5sinθ,5cosθ),半径等于1.∵|CM|=
=5>2+1,故两圆相离.
∵
•
=|
|•
•cos∠EPF,要使
•
最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
(5sinθ)2+(5cosθ)2 (5sinθ)2+(5cosθ)2 (5sinθ)2+(5cosθ)22+(5cosθ)22=5>2+1,故两圆相离.
∵
•
=|
|•
•cos∠EPF,要使
•
最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
PE PE PE•
PF PF PF=|
|•
•cos∠EPF,要使
•
最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
|
PE PE PE|•
|PF| |PF| |PF|•cos∠EPF,要使
•
最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
PE PE PE•
PF PF PF 最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
|
PE PE PE| 和
|PF| |PF| |PF| 最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
PE PE PE•
PF PF PF的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
HE HE HE•
HF HF HF.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
|HM|2−|ME|2 |HM|2−|ME|2 |HM|2−|ME|22−|ME|22=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
9−1 9−1 9−1=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
2 2 2,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
|ME| |ME| |ME||MH| |MH| |MH|=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
1 1 13 3 3,
∴cos∠EHF=cos2∠MHE=1-2sin22∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
7 7 79 9 9,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
HE HE HE•
HF HF HF=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
2 2 2×2
×
=
,故选 B.
2 2 2×
=
,故选 B.
7 7 79 9 9=
,故选 B.
56 56 569 9 9,故选 B.
圆心M(2+5sinθ,5cosθ),半径等于1.∵|CM|=
(5sinθ)2+(5cosθ)2 |
∵
PE |
PF |
PE |
|PF| |
PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

(5sinθ)2+(5cosθ)2 |
∵
PE |
PF |
PE |
|PF| |
PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
PF |
PE |
|PF| |
PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
|PF| |
PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin22∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

2 |
2 |
7 |
9 |
56 |
9 |

2 |
7 |
9 |
56 |
9 |

7 |
9 |
56 |
9 |

56 |
9 |

看了 圆C的方程为(x-2)2+y...的网友还看了以下:
在下列括号内填上“<”、“>”“=”.7/3*5()7/35/4*1()5/48/5*4/1()3 2020-04-07 …
在括号里填大于小于或等于.解方程请把过程写下来!(1)7/5X3/2○7/57/5÷3/2○7/5 2020-04-07 …
代数式3x^2-4x-5的值为7,则x^2-4/3x-5的值为 2020-05-16 …
直接写出得数:直接写出得数:①1/2+1/3=②2/5-1/6=③2/5+3/8=④1-7/8=⑤ 2020-05-22 …
脱式计算,能简算的要简算.(1)8×1.09×1.25(2)1.5×106(3)1.65×4.3+ 2020-07-17 …
计算(能简算的要简算)1.3.8×3.8+3.8×10/5+3.8==2.171/21×7==3. 2020-07-18 …
1、(191/12-31/4)÷(7/15+2/5)2、23/5×6.7+28/5+2.3÷5/2 2020-07-18 …
若a(a-1)-(a^2-b)=7,则a^2+b^2)/2-ab=?若a(a-1)-(a²-b)=7 2020-11-07 …
纯属数学文盲2/3*4/7*3/4(18+2/7)*7/94/7*3/5+2/5*4/78/9*10 2020-12-14 …
一道考人的数学题!1=1^2,1+3=2^2,1+3+5=3^2,1+3+5+7=4^2,1+3+5 2021-01-04 …