早教吧作业答案频道 -->其他-->
圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5sinθ)2+(y-5cosθ)2=1(θ∈R),过圆C上任意一点P作圆M的两条切线PE、PF,切点分别为E、F,则PE•PF的最小值是()A.6B.569C.7D.659
题目详情
圆C的方程为(x-2)2+y2=4,圆M的方程为(x-2-5sinθ)2+(y-5cosθ)2=1(θ∈R),过圆C上任意一点P作圆M的两条切线PE、PF,切点分别为E、F,则
•
的最小值是( )
A.6
B.
C.7
D.
2222
•
的最小值是( )
A.6
B.
C.7
D.
PE PE
PF PF
C.7
D.
56 56 9 9
65 65 9 9
PE |
PF |
A.6
B.
56 |
9 |
C.7
D.
65 |
9 |
PE |
PF |
A.6
B.
56 |
9 |
C.7
D.
65 |
9 |
PE |
PF |
56 |
9 |
C.7
D.
65 |
9 |
56 |
9 |
65 |
9 |
65 |
9 |
▼优质解答
答案和解析
(x-2)22+y22=4的圆心C(2,0),半径等于2,圆M (x-2-5sinθ)22+(y-5cosθ)22=1,
圆心M(2+5sinθ,5cosθ),半径等于1.∵|CM|=
=5>2+1,故两圆相离.
∵
•
=|
|•
•cos∠EPF,要使
•
最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
(5sinθ)2+(5cosθ)2 (5sinθ)2+(5cosθ)2 (5sinθ)2+(5cosθ)22+(5cosθ)22=5>2+1,故两圆相离.
∵
•
=|
|•
•cos∠EPF,要使
•
最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
PE PE PE•
PF PF PF=|
|•
•cos∠EPF,要使
•
最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
|
PE PE PE|•
|PF| |PF| |PF|•cos∠EPF,要使
•
最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
PE PE PE•
PF PF PF 最小,需|
| 和
最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
|
PE PE PE| 和
|PF| |PF| |PF| 最小,且∠EPF 最大,
如图所示,设直线CM 和圆C 交于H、G两点,则
•
的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
PE PE PE•
PF PF PF的最小值是
•
.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
HE HE HE•
HF HF HF.
|H M|=|CM|-2=5-2=3,|H E|=
=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
|HM|2−|ME|2 |HM|2−|ME|2 |HM|2−|ME|22−|ME|22=
=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
9−1 9−1 9−1=2
,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
2 2 2,sin∠MHE=
=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
|ME| |ME| |ME||MH| |MH| |MH|=
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
1 1 13 3 3,
∴cos∠EHF=cos2∠MHE=1-2sin22∠MHE=
,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
7 7 79 9 9,
∴
•
=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
HE HE HE•
HF HF HF=|H E|•|H E|•cos∠EHF=2
×2
×
=
,故选 B.
2 2 2×2
×
=
,故选 B.
2 2 2×
=
,故选 B.
7 7 79 9 9=
,故选 B.
56 56 569 9 9,故选 B.
圆心M(2+5sinθ,5cosθ),半径等于1.∵|CM|=
(5sinθ)2+(5cosθ)2 |
∵
PE |
PF |
PE |
|PF| |
PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

(5sinθ)2+(5cosθ)2 |
∵
PE |
PF |
PE |
|PF| |
PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
PF |
PE |
|PF| |
PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
|PF| |
PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
PF |
PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
|PF| |
如图所示,设直线CM 和圆C 交于H、G两点,则
PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

PE |
PF |
HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

HE |
HF |
|H M|=|CM|-2=5-2=3,|H E|=
|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

|HM|2−|ME|2 |
9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

9−1 |
2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

2 |
|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

|ME| |
|MH| |
1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

1 |
3 |
∴cos∠EHF=cos2∠MHE=1-2sin22∠MHE=
7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

7 |
9 |
∴
HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

HE |
HF |
2 |
2 |
7 |
9 |
56 |
9 |

2 |
2 |
7 |
9 |
56 |
9 |

2 |
7 |
9 |
56 |
9 |

7 |
9 |
56 |
9 |

56 |
9 |

看了 圆C的方程为(x-2)2+y...的网友还看了以下:
已知p为抛物线y^2=4x上一点,设p到准线的距离为d1,p到点a(1,4)的距离为d2,则d1+ 2020-05-15 …
圆和直线方程已知直线l的方程为x-y+2根号2=0,圆的方程为x+y=1(1)若Q为圆O上任一 2020-05-17 …
园的方程已知点A在直线2x-3y+5=0上移动,点P为连接M(4,-3)和点A已知点A在直线2x- 2020-05-23 …
点p是直线l:x-y+9=0上一点,过p以椭圆x^2/12+y^2/3=1的焦点为焦点作椭圆(1) 2020-06-21 …
已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线 2020-07-26 …
已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足PM=MP′,当P在圆上运动 2020-07-30 …
求指教"过直线L1:3x-y-5=0,L2:x+2y-4=0的交点且与直线L3:2x-y+1=0垂 2020-08-01 …
求过P且垂直于直线l0的直线的一般式方程P(-2,-1),l0:(x-1)/3=(y+2)/41. 2020-08-01 …
已知点P(1,1)为椭圆C:x^2/9+y^2/4=1内一定点,过点P的弦AB在点P被平分,求弦AB 2020-11-27 …
以致A(8,0)B(0,6)O为坐标原点求三角形AOB内切圆C的方程(2)设P是圆C上一点求P到直线 2021-01-13 …