早教吧作业答案频道 -->数学-->
已知{an}为递减的等比数列,且{a1,a2,a3}⊊{-4,-3,-2,0,1,2,3,4}.(Ⅰ)求数列{an}的通项公式;(Ⅱ)当bn=1−(−1)n2an时,求证:b1+b2+b3+…+b2n−1<163.
题目详情
已知{an}为递减的等比数列,且{a1,a2,a3}⊊{-4,-3,-2,0,1,2,3,4}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当bn=
an时,求证:b1+b2+b3+…+b2n−1<
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当bn=
| 1−(−1)n |
| 2 |
| 16 |
| 3 |
▼优质解答
答案和解析
(Ⅰ)∵{an}是递减数列,∴数列{an}的公比q是正数,
∵{a1,a2,a3}⊊{-4,-3,-2,0,1,2,3,4},
∴a1=4,a2=2,a3=1,∴q=
=
=
,
∴an=a1qn−1=
.
(Ⅱ)由(1)得,bn=
an=
,
当n=2k(k∈N*)时,bn=0,
当n=2k-1(k∈N*)时,bn=an,
即bn=
∴b1+b2+b3+…+b2n-2+b2n-1=a1+a3+…+a2n-1
=
=
[1−(
)n]<
.
∵{a1,a2,a3}⊊{-4,-3,-2,0,1,2,3,4},
∴a1=4,a2=2,a3=1,∴q=
| a2 |
| a1 |
| 1 |
| 4 |
| 1 |
| 2 |
∴an=a1qn−1=
| 8 |
| 2n |
(Ⅱ)由(1)得,bn=
| 1−(−1)n |
| 2 |
| 8[1−(−1)n] |
| 2n+1 |
当n=2k(k∈N*)时,bn=0,
当n=2k-1(k∈N*)时,bn=an,
即bn=
|
∴b1+b2+b3+…+b2n-2+b2n-1=a1+a3+…+a2n-1
=
4[1−(
| ||
1−
|
=
| 16 |
| 3 |
| 1 |
| 4 |
| 16 |
| 3 |
看了 已知{an}为递减的等比数列...的网友还看了以下:
n(n+1)(n+2)最大公约数(n+1)(n+2)(n+3)(n+4)+1=分解公因式要理由和步骤 2020-03-30 …
求一个无穷级数无穷级数1+1/(n+2)+1/(n+2)^2+1/(n+2)^3+1/(n+2)^4 2020-03-31 …
数列1.1/2.1/2.1/3.1/3.1/3.1/4.1/4.1/4.1/4.1/n.1/n.1 2020-04-09 …
1.在三位自然数中,被3和5除所得余数都是2的数之和为?2.设Sn=1-2+3-4+…+(-1)^ 2020-05-21 …
2011吴江高一新生生活指南的几个题不会、求高人解答分解因式:(m²-n²)x²+m²x+n²x+ 2020-06-11 …
设Sn为等差数列{an}的前n项和,已知S3=a7,a8-2a3=3.(1)求an;(2)设b设S 2020-07-09 …
已知A(0,1/n)B(0,-2/n)C(4+1/n,0)其中n为整数,设Sn表示△ABC外接圆的 2020-07-18 …
已知点A(0,1/n),B(0,-1/n),C(4+1/n,0),其中n为正整数,设Sn表示△AB 2020-07-18 …
求最小的n使得1/1×2×3+1/2×3×4+.+1/n(n+1)(n+2)大于等与6/251/1 2020-07-19 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …