早教吧作业答案频道 -->其他-->
已知2+23=22×23,3+38=32×38,4+415=42×415,…;请你观察后,找出规律,并写出一组等式5+524=52×5245+524=52×524,若用n(n为正整数)表示上面的规律为(n+1)+n+1(n+1)2−1=(n+1)2•n+1(n+1)2−1(n+1)+n
题目详情
已知2+
=22×
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
=22×
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
2 2 3 3 22×
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
2 2 3 3
3 3 8 8 32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
3 3 8 8
4 4 15 15 42×
,…;请你观察后,找出规律,并写出一组等式
,…;请你观察后,找出规律,并写出一组等式
,…;请你观察后,找出规律,并写出一组等式
4 4 15 15
=52×
5 5 24 24 52×
52×
2×
5 5 24 24
=52×
5 5 24 24 52×
52×
2×
5 5 24 24
=(n+1)2•
n+1 n+1 (n+1)2−1 (n+1)2−1 (n+1)2−1(n+1)2−12−1(n+1)2•
(n+1)2•
2•
n+1 n+1 (n+1)2−1 (n+1)2−1 (n+1)2−1(n+1)2−12−1
=(n+1)2•
n+1 n+1 (n+1)2−1 (n+1)2−1 (n+1)2−1(n+1)2−12−1(n+1)2•
(n+1)2•
2•
n+1 n+1 (n+1)2−1 (n+1)2−1 (n+1)2−1(n+1)2−12−1
2 |
3 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.2+n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.22×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.2×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.32×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.2×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.42×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.2×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
4 |
15 |
5+
=52×
5+5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5+
=52×
5+5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
(n+1)+n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
(n+1)+n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
▼优质解答
答案和解析
∵2+23=22×23,3+38=32×38,4+415=42×415,所以写一组等式为 5+524=52×524,若用n(n为正整数)表示上面的规律为 (n+1)+n+1(n+1)2−1=(n+1)2•n+1(n+1)2−1.故答案为:5+524=52×524,(n+1)+n+1(n+1)2−1...
看了 已知2+23=22×23,3...的网友还看了以下:
初2整式乘法练习题,1.比较2的333次方与3的222次方的大小2.8的N+1次方=16的N-2次 2020-06-24 …
1、已知2*8的n次方*16的n次方=2的22次方,求n的值.2、已知q的m次方=4,q的n次方= 2020-07-21 …
若2.8的n次方乘16的n次方等于2的22次方,求n的值(过程) 2020-07-22 …
若2*8的N次方*16的N次方=2的22次方求N的值.若2的a次方=32的B次方=52的C次方=3 2020-07-22 …
①若2×8的n次方×16的n次方=2的22次方,求n的值.②已知n是正整数且(x的n次方)的2次方 2020-07-22 …
2×8的n次方×16的n次方等于2的22次方求n 2020-07-22 …
1.如果(9的n次方)的平方=3的8次方,求(2n+1)的平方.2.如果2*8的n次方*16的n次 2020-07-23 …
若多项式(a+b-2)x^4-3x^c-(a-b-4)x^2-8x-4为三次三项式,则(b+c)^ 2020-07-31 …
关于集合的B={y|y=-x^2+8,x∈N,y∈N};请用列举法表示`顺便写一下解析`感激不尽! 2020-08-01 …
若a的m次方=a的n次方(a>且a≠1,m、n是正整数),则m=n,你能利用这个结论解决下面的问题吗 2021-02-04 …