早教吧作业答案频道 -->其他-->
已知2+23=22×23,3+38=32×38,4+415=42×415,…;请你观察后,找出规律,并写出一组等式5+524=52×5245+524=52×524,若用n(n为正整数)表示上面的规律为(n+1)+n+1(n+1)2−1=(n+1)2•n+1(n+1)2−1(n+1)+n
题目详情
已知2+
=22×
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
=22×
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
2 2 3 3 22×
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
,3+
=32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
2 2 3 3
3 3 8 8 32×
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
,4+
=42×
,…;请你观察后,找出规律,并写出一组等式
3 3 8 8
4 4 15 15 42×
,…;请你观察后,找出规律,并写出一组等式
,…;请你观察后,找出规律,并写出一组等式
,…;请你观察后,找出规律,并写出一组等式
4 4 15 15
=52×
5 5 24 24 52×
52×
2×
5 5 24 24
=52×
5 5 24 24 52×
52×
2×
5 5 24 24
=(n+1)2•
n+1 n+1 (n+1)2−1 (n+1)2−1 (n+1)2−1(n+1)2−12−1(n+1)2•
(n+1)2•
2•
n+1 n+1 (n+1)2−1 (n+1)2−1 (n+1)2−1(n+1)2−12−1
=(n+1)2•
n+1 n+1 (n+1)2−1 (n+1)2−1 (n+1)2−1(n+1)2−12−1(n+1)2•
(n+1)2•
2•
n+1 n+1 (n+1)2−1 (n+1)2−1 (n+1)2−1(n+1)2−12−1
2 |
3 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.2+n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.22×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.2×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.32×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.2×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
3 |
8 |
4 |
15 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.42×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.2×n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
,若用n(n为正整数)表示上面的规律为5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
.n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
4 |
15 |
5+
=52×
5+5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5+
=52×
5+5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
(n+1)+
=(n+1)2•
(n+1)+n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
(n+1)+
=(n+1)2•
(n+1)+n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
n+1 |
(n+1)2−1 |
▼优质解答
答案和解析
∵2+23=22×23,3+38=32×38,4+415=42×415,所以写一组等式为 5+524=52×524,若用n(n为正整数)表示上面的规律为 (n+1)+n+1(n+1)2−1=(n+1)2•n+1(n+1)2−1.故答案为:5+524=52×524,(n+1)+n+1(n+1)2−1...
看了 已知2+23=22×23,3...的网友还看了以下:
1,2=3分之()=()分之182,求比值:1.5小时:40分钟=3,化成最简整数比:2:3分之1: 2020-03-30 …
一、·...1÷9=0.12÷9=0.23÷9=0.34÷9=0.4观察上面的结果,你发现了什么? 2020-04-09 …
特征向量题设三阶实对称矩阵A的特征值为1,2,3;矩阵A的属于特征值1,2的特征向量分别是a1=( 2020-04-13 …
已知aΔb=(a-b)2,a※b=(a+b)(a-b),例如,1Δ2=(1-2)2=1,1※2=( 2020-05-15 …
用直接开放法解下列方程!(1).9(2x-1)^2-16=0(2).(x+2)^2=(2x+3)^ 2020-05-20 …
若x是不等于1的有理数,我们把1/1-x称为x的差倒数,如2的差倒数是1/1-2=-1,-的差倒数 2020-06-14 …
1×2+2×3+3×4+4×5+…+n(n+1)=(n为自然数).因为:1×2=1/3×1×2×3 2020-07-21 …
1.已知x,y为实数,且y=(x-1/2)^(1/2)+(1/2-x)^(1/2)+1/2,求5x+ 2020-10-31 …
阅读下列计算过程,发现规律,然后利用规律计算:1+2=(1+2)×22=31+2+3=(1+3)×3 2020-11-01 …
定义:m是不为一的有理数,我们把1/m-1称为m的差倒数.如:2的差倒数是1/1-2=-1,-1差倒 2021-01-20 …