早教吧作业答案频道 -->其他-->
已知:2+23=22×23,3+38=32×38,4+415=42×415,…,观察规律填空:(1)请写出下一个等式:5+524=52×5245+524=52×524.(2)用含n的代数式表示这个规律:n2×nn2−1n2×nn2−1.(3)若10+ab=102×ab(a
题目详情
已知:2+
=22×
,3+
=32×
,4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.2+
=22×
,3+
=32×
,4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.
2 2 3 3 22×
,3+
=32×
,4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.22×
,3+
=32×
,4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.2×
,3+
=32×
,4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.
2 2 3 3 3+
=32×
,4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.
3 3 8 8 32×
,4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.32×
,4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.2×
,4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.
3 3 8 8 4+
=42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.
4 4 15 15 42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.42×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.2×
,…,观察规律填空:
(1)请写出下一个等式:
(2)用含n的代数式表示这个规律:
(3)若10+
=102×
(a、b为正整数),则a+b______.
4 4 15 15
=52×
5 5 24 24 2
5 5 24 24
=52×
5 5 24 24 2
5 5 24 24
n n n2−1 n2−1 n2−1n2−12−1
n n n2−1 n2−1 n2−1n2−12−1
+
=102×
(a、b为正整数),则a+b______.
a a b b 02×
(a、b为正整数),则a+b______.02×
(a、b为正整数),则a+b______.2×
(a、b为正整数),则a+b______.
a a b b
2 |
3 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
2 |
3 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
2 |
3 |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
2 |
3 |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
3 |
8 |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
3 |
8 |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
4 |
15 |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
4 |
15 |
(1)请写出下一个等式:
5+
=52×
5 |
24 |
5 |
24 |
5+
=52×
.5 |
24 |
5 |
24 |
(2)用含n的代数式表示这个规律:
n2×
n |
n2−1 |
n2×
.n |
n2−1 |
(3)若10+
a |
b |
a |
b |
4 |
15 |
5+
=52×
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5+
=52×
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
5 |
24 |
n2×
2n |
n2−1 |
n |
n2−1 |
n |
n2−1 |
n2×
2n |
n2−1 |
n |
n2−1 |
n |
n2−1 |
+
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
▼优质解答
答案和解析
(1)5+
=52×
;
(2)n+
=n2×
;
(3)若10+
=102×
(a、b为正整数),
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
=52×
;(2)n+
=n2×
;(3)109.
5 5 524 24 24=522×
;
(2)n+
=n2×
;
(3)若10+
=102×
(a、b为正整数),
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
=52×
;(2)n+
=n2×
;(3)109.
5 5 524 24 24;
(2)n+
=n2×
;
(3)若10+
=102×
(a、b为正整数),
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
=52×
;(2)n+
=n2×
;(3)109.
n n nn2−1 n2−1 n2−12−1=n22×
;
(3)若10+
=102×
(a、b为正整数),
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
=52×
;(2)n+
=n2×
;(3)109.
n n nn2−1 n2−1 n2−12−1;
(3)若10+
=102×
(a、b为正整数),
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
=52×
;(2)n+
=n2×
;(3)109. +
a a ab b b=102×
(a、b为正整数),
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
=52×
;(2)n+
=n2×
;(3)109. 2×
a a ab b b(a、b为正整数),
所以a=10,b=1022-1=99
则a+b=10+99=109.
故答案为:(1)5+
=52×
;(2)n+
=n2×
;(3)109.
5 5 524 24 24=522×
;(2)n+
=n2×
;(3)109.
5 5 524 24 24;(2)n+
=n2×
;(3)109.
n n nn2−1 n2−1 n2−12−1=n22×
;(3)109.
n n nn2−1 n2−1 n2−12−1;(3)109.
5 |
24 |
5 |
24 |
(2)n+
n |
n2−1 |
n |
n2−1 |
(3)若10+
a |
b |
a |
b |
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
5 |
24 |
5 |
24 |
n |
n2−1 |
n |
n2−1 |
5 |
24 |
5 |
24 |
(2)n+
n |
n2−1 |
n |
n2−1 |
(3)若10+
a |
b |
a |
b |
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
5 |
24 |
5 |
24 |
n |
n2−1 |
n |
n2−1 |
5 |
24 |
(2)n+
n |
n2−1 |
n |
n2−1 |
(3)若10+
a |
b |
a |
b |
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
5 |
24 |
5 |
24 |
n |
n2−1 |
n |
n2−1 |
n |
n2−1 |
n |
n2−1 |
(3)若10+
a |
b |
a |
b |
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
5 |
24 |
5 |
24 |
n |
n2−1 |
n |
n2−1 |
n |
n2−1 |
(3)若10+
a |
b |
a |
b |
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
5 |
24 |
5 |
24 |
n |
n2−1 |
n |
n2−1 |
a |
b |
a |
b |
所以a=10,b=102-1=99
则a+b=10+99=109.
故答案为:(1)5+
5 |
24 |
5 |
24 |
n |
n2−1 |
n |
n2−1 |
a |
b |
所以a=10,b=1022-1=99
则a+b=10+99=109.
故答案为:(1)5+
5 |
24 |
5 |
24 |
n |
n2−1 |
n |
n2−1 |
5 |
24 |
5 |
24 |
n |
n2−1 |
n |
n2−1 |
5 |
24 |
n |
n2−1 |
n |
n2−1 |
n |
n2−1 |
n |
n2−1 |
n |
n2−1 |
看了 已知:2+23=22×23,...的网友还看了以下:
24点 2 3 5 8 2 3 5 10 2 3 7 9 2 3 7 10 2 5 5 10 2 2020-05-16 …
4,2,3,5,1,14,-9有什么规律?a、4,2,3,5,1,14,(-9)b、-1,1,3, 2020-05-23 …
49.7-[-23/3/4+(18.7-25.25)]12+1又3/4-8又5/12-6.75-( 2020-06-04 …
六年级数学计算(能简便的要简便)1、2/3×5/7+2/3×2/72、5/6×3/8+5/8÷5/ 2020-06-07 …
(1)2-2÷1/3×3(2)-1³-﹙1+0.5﹚×1/3÷﹙-4﹚﹙3﹚-3-﹙-1-0.2÷ 2020-06-11 …
设非空集合A{1,2,3,4,5,6,7},且当a∈A时必有8-a∈A,这样的A共有(15)个.{ 2020-08-01 …
(1)10y+7=22y-5-3y(2)3.5x-5=0.5x+10-2x(3)7x-2(4-x)= 2020-10-31 …
9个数7个一组能分成36组,例如1.2.3.4.5.6.71.3.4.5.6.7.8求列表这是我列出 2020-11-28 …
设非空集合A{1,2,3,4,5,6,7},且当a∈A时必有8-a∈A,这样的A共有(15)个.{4 2020-12-07 …
高手帮忙解决一道初2数学诡辩题2=3因为4-10=9-15,所以4-10+25/4=9-15+25/ 2020-12-23 …