早教吧作业答案频道 -->其他-->
如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.(1)若A、B的坐标分别是A(35,45),B(−513,1213),求cos(β-α);(2)若点C(−1,3),求函数f(α)=OA•OC的值
题目详情
如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.(1)若A、B的坐标分别是A(
| 3 |
| 5 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
(2)若点C(−1 ,
| 3 |
| OA |
| OC |

A(
| 3 |
| 5 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
(2)若点C(−1 ,
| 3 |
| OA |
| OC |
| 3 |
| 5 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
(2)若点C(−1 ,
| 3 |
| OA |
| OC |
| 5 |
| 13 |
| 12 |
| 13 |
(−1 ,
| 3 |
| OA |
| OC |
| 3 |
| OA |
| OC |
| 3 |
| OA |
| OC |
| 3 |
| OA |
| OC |
| 3 |
| OA |
| OC |
| 3 |
| OA |
| OC |
| 3 |
| OA |
| OC |
| 3 |
| OA |
| OC |
| OA |
| OC |
▼优质解答
答案和解析
(1)∵A(
,
),B(−
,
)都在单位圆上
∴根据三角函数的定义,得cosα=
,sinα=
,cosβ=−
,sinβ=
.
因此,cos(β−α)=cosβcosα+sinβsinα=(−
)×
+
×
=
. ( 6分)
(2)由题意,可知
=(cosα,sinα),
=(−1,
).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) A(
3 3 35 5 5,
4 4 45 5 5),B(−
,
)都在单位圆上
∴根据三角函数的定义,得cosα=
,sinα=
,cosβ=−
,sinβ=
.
因此,cos(β−α)=cosβcosα+sinβsinα=(−
)×
+
×
=
. ( 6分)
(2)由题意,可知
=(cosα,sinα),
=(−1,
).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) B(−
5 5 513 13 13,
12 12 1213 13 13)都在单位圆上
∴根据三角函数的定义,得cosα=
,sinα=
,cosβ=−
,sinβ=
.
因此,cos(β−α)=cosβcosα+sinβsinα=(−
)×
+
×
=
. ( 6分)
(2)由题意,可知
=(cosα,sinα),
=(−1,
).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) cosα=
3 3 35 5 5,sinα=
,cosβ=−
,sinβ=
.
因此,cos(β−α)=cosβcosα+sinβsinα=(−
)×
+
×
=
. ( 6分)
(2)由题意,可知
=(cosα,sinα),
=(−1,
).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) sinα=
4 4 45 5 5,cosβ=−
,sinβ=
.
因此,cos(β−α)=cosβcosα+sinβsinα=(−
)×
+
×
=
. ( 6分)
(2)由题意,可知
=(cosα,sinα),
=(−1,
).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) cosβ=−
5 5 513 13 13,sinβ=
.
因此,cos(β−α)=cosβcosα+sinβsinα=(−
)×
+
×
=
. ( 6分)
(2)由题意,可知
=(cosα,sinα),
=(−1,
).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) sinβ=
12 12 1213 13 13.
因此,cos(β−α)=cosβcosα+sinβsinα=(−
)×
+
×
=
. ( 6分)
(2)由题意,可知
=(cosα,sinα),
=(−1,
).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) cos(β−α)=cosβcosα+sinβsinα=(−
5 5 513 13 13)×
3 3 35 5 5+
12 12 1213 13 13×
4 4 45 5 5=
33 33 3365 65 65. ( 6分)
(2)由题意,可知
=(cosα,sinα),
=(−1,
).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分)
OA OA OA=(cosα,sinα),
=(−1,
).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分)
OC OC OC=(−1,
3 3 3).
∴f(α)=
•
=
sinα−cosα=2sin(α−
),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) f(α)=
OA OA OA•
OC OC OC=
3 3 3sinα−cosα=2sin(α−
π π π6 6 6),
∵0<α<
,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) 0<α<
π π π2 2 2,∴−
<α−
<
,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) −
π π π6 6 6<α−
π π π6 6 6<
π π π3 3 3,可得−
<sin(α−
)<
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) −
1 1 12 2 2<sin(α−
π π π6 6 6)<
3 3 32 2 2
由此可得:−1<f(α)<
,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) −1<f(α)<
3 3 3,
∴函数f(α)=
•
的值域为(−1,
). ( 13分) f(α)=
OA OA OA•
OC OC OC的值域为(−1,
). ( 13分) (−1,
3 3 3). ( 13分)
| 3 |
| 5 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
∴根据三角函数的定义,得cosα=
| 3 |
| 5 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
因此,cos(β−α)=cosβcosα+sinβsinα=(−
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 33 |
| 65 |
(2)由题意,可知
| OA |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| 3 |
| 5 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
∴根据三角函数的定义,得cosα=
| 3 |
| 5 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
因此,cos(β−α)=cosβcosα+sinβsinα=(−
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 33 |
| 65 |
(2)由题意,可知
| OA |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| 5 |
| 13 |
| 12 |
| 13 |
∴根据三角函数的定义,得cosα=
| 3 |
| 5 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
因此,cos(β−α)=cosβcosα+sinβsinα=(−
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 33 |
| 65 |
(2)由题意,可知
| OA |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| 3 |
| 5 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
因此,cos(β−α)=cosβcosα+sinβsinα=(−
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 33 |
| 65 |
(2)由题意,可知
| OA |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
因此,cos(β−α)=cosβcosα+sinβsinα=(−
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 33 |
| 65 |
(2)由题意,可知
| OA |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| 5 |
| 13 |
| 12 |
| 13 |
因此,cos(β−α)=cosβcosα+sinβsinα=(−
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 33 |
| 65 |
(2)由题意,可知
| OA |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| 12 |
| 13 |
因此,cos(β−α)=cosβcosα+sinβsinα=(−
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 33 |
| 65 |
(2)由题意,可知
| OA |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| 5 |
| 13 |
| 3 |
| 5 |
| 12 |
| 13 |
| 4 |
| 5 |
| 33 |
| 65 |
(2)由题意,可知
| OA |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| OA |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| OC |
| 3 |
∴f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| OA |
| OC |
| 3 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
| 3 |
| 3 |
| 3 |
由此可得:−1<f(α)<
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| 3 |
∴函数f(α)=
| OA |
| OC |
| 3 |
| OA |
| OC |
| 3 |
| 3 |
看了 如图,在平面直角坐标系中,锐...的网友还看了以下:
一道有关平面向量的高一数学题O是平面上的坐标原点,A,B,C是平面上三点(不在一条直线上).且向量 2020-05-16 …
向量a=(sino,coso)与向量b=(根号3,1),其中o∈(0,π/2).(1)若向量a与向 2020-05-17 …
1.点(2,-1)按向量a平移后得(-2,1),它把点(-2,1)平移到()A.(2,-1)B.( 2020-05-23 …
已知:A,B,C是平面内互异的三点,O为平面上任意一点,OC=xOA+yOB已知:A,B,C是平面 2020-06-15 …
直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点 2020-07-30 …
已知椭圆C:X平方除以a平方+y平方除以b平方a>b>O.离心率为1/2.从原点为圆心,椭圆半短轴 2020-08-01 …
如图,点AB在数轴上对应的数分别是a、b,且|a+2|+(b-1)²=0.(1)求AB的长;—A—— 2020-11-01 …
(2002•荆门)如图,两平面镜α、β的夹角为θ,入射光线AO平行于β入射到口上,经两次反射后的出射 2020-11-12 …
(经典题)如图所示,两平面镜α、β的夹角为60°,入射光线AO平行于β入射到α上,经两次反射后的反射 2020-12-05 …
如图,在平面直角坐标系xOy中,△AOB三个顶点的坐标分别为O(0,0),A(1,3),B(2,2) 2020-12-25 …