早教吧作业答案频道 -->数学-->
△ABC中,D为边BC上的一点,BD=33,sinB=513,cos∠ADC=35,求AD.
题目详情
5 |
13 |
3 |
5 |
5 |
13 |
3 |
5 |
3 |
5 |
▼优质解答
答案和解析
由cos∠ADC=
>0,则∠ADC<
,
又由知B<∠ADC可得B<
,
由sinB=
,可得cosB=
,
又由cos∠ADC=
,可得sin∠ADC=
.
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
×
−
×
=
.
由正弦定理得
=
,
所以AD=
=
=25.
3 3 35 5 5>0,则∠ADC<
,
又由知B<∠ADC可得B<
,
由sinB=
,可得cosB=
,
又由cos∠ADC=
,可得sin∠ADC=
.
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
×
−
×
=
.
由正弦定理得
=
,
所以AD=
=
=25.
π π π2 2 2,
又由知B<∠ADC可得B<
,
由sinB=
,可得cosB=
,
又由cos∠ADC=
,可得sin∠ADC=
.
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
×
−
×
=
.
由正弦定理得
=
,
所以AD=
=
=25.
π π π2 2 2,
由sinB=
,可得cosB=
,
又由cos∠ADC=
,可得sin∠ADC=
.
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
×
−
×
=
.
由正弦定理得
=
,
所以AD=
=
=25.
5 5 513 13 13,可得cosB=
,
又由cos∠ADC=
,可得sin∠ADC=
.
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
×
−
×
=
.
由正弦定理得
=
,
所以AD=
=
=25.
12 12 1213 13 13,
又由cos∠ADC=
,可得sin∠ADC=
.
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
×
−
×
=
.
由正弦定理得
=
,
所以AD=
=
=25.
3 3 35 5 5,可得sin∠ADC=
.
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
×
−
×
=
.
由正弦定理得
=
,
所以AD=
=
=25.
4 4 45 5 5.
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
×
−
×
=
.
由正弦定理得
=
,
所以AD=
=
=25.
4 4 45 5 5×
12 12 1213 13 13−
3 3 35 5 5×
5 5 513 13 13=
.
由正弦定理得
=
,
所以AD=
=
=25.
33 33 3365 65 65.
由正弦定理得
=
,
所以AD=
=
=25.
AD AD ADsinB sinB sinB=
BD BD BDsin∠BAD sin∠BAD sin∠BAD,
所以AD=
=
=25.
BD•sinB BD•sinB BD•sinBsin∠BAD sin∠BAD sin∠BAD=
=25.
33×
33×
33×
5 5 513 13 13
33 33 3365 65 65=25.
3 |
5 |
π |
2 |
又由知B<∠ADC可得B<
π |
2 |
由sinB=
5 |
13 |
12 |
13 |
又由cos∠ADC=
3 |
5 |
4 |
5 |
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
3 |
5 |
π |
2 |
又由知B<∠ADC可得B<
π |
2 |
由sinB=
5 |
13 |
12 |
13 |
又由cos∠ADC=
3 |
5 |
4 |
5 |
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
π |
2 |
又由知B<∠ADC可得B<
π |
2 |
由sinB=
5 |
13 |
12 |
13 |
又由cos∠ADC=
3 |
5 |
4 |
5 |
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
π |
2 |
由sinB=
5 |
13 |
12 |
13 |
又由cos∠ADC=
3 |
5 |
4 |
5 |
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
5 |
13 |
12 |
13 |
又由cos∠ADC=
3 |
5 |
4 |
5 |
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
12 |
13 |
又由cos∠ADC=
3 |
5 |
4 |
5 |
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
3 |
5 |
4 |
5 |
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
4 |
5 |
从而sin∠BAD=sin(∠ADC-B)=sin∠ADCcosB-cos∠ADCsinB=
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
4 |
5 |
12 |
13 |
3 |
5 |
5 |
13 |
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
33 |
65 |
由正弦定理得
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
AD |
sinB |
BD |
sin∠BAD |
所以AD=
BD•sinB |
sin∠BAD |
33×
| ||
|
BD•sinB |
sin∠BAD |
33×
| ||
|
33×
| ||
|
5 |
13 |
5 |
13 |
5 |
13 |
33 |
65 |
33 |
65 |
33 |
65 |
看了 △ABC中,D为边BC上的一...的网友还看了以下:
在三角形ABC中,已知(sinA+sin+B+sinC)(sinA+sinB-sinC)=3,a在 2020-05-13 …
正弦定理问题在三角形ABC中,若(a+b)(sinB-sinA)=a(sinB),且cos2C+c 2020-05-20 …
(2012•徐汇区二模)在Rt△ABC中,∠C=90°,AC=6,sinB=35,⊙B的半径长为1 2020-06-15 …
高一正玄定理……求指点在△ABC中,(1)已知A=135°,B=15°,c=1,求这个三角形的最大 2020-07-02 …
命题“若A=B,则sinA=sinB”的逆否命题是()A.若sinA≠sinB,则A≠BB.若si 2020-07-14 …
在△ABC中,a、b、c分别是∠A、∠B、∠C所对边的边长,若(a+b+c)(sinA+sinB- 2020-07-24 …
△ABC中,若sinA^2+sinB^2=sin(A+B),且A、B都是锐角,求A+B的值这道题有 2020-08-02 …
请说明最后一步(x-1/4)^2+y^2=1/16如何得来?参数方程:已知直线C1:x=1+tco 2020-08-02 …
请说明最后一步(x-1/4)^2+y^2=1/16如何得来?参数方程:已知直线C1:x=1+tco 2020-08-02 …
1、甲乙两数的积是20.45,如果甲数的小数点向左移动两位,乙数的小数点向右移动一位,这是甲乙两数的 2020-12-09 …