早教吧作业答案频道 -->其他-->
某项实验研究需要一种高标准的产品,对这种产品要检测A、B两项技术指标,各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为512,至少一项技术指标达标的概率为1112
题目详情
某项实验研究需要一种高标准的产品,对这种产品要检测A、B两项技术指标,各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为
,至少一项技术指标达标的概率为
,按要求只有两项技术指标都达标的产品才能用于该实验(称为合格品),
(Ⅰ)设A、B两项技术指标达标的概率分别为p1、p2,求一件产品经过检测为合格品的概率是多少?
(Ⅱ)若进行该项实验需要这种产品100个,为保证实验的顺利进行,则至少要购进多少件这样的产品?
,至少一项技术指标达标的概率为
,按要求只有两项技术指标都达标的产品才能用于该实验(称为合格品),
(Ⅰ)设A、B两项技术指标达标的概率分别为p1、p2,求一件产品经过检测为合格品的概率是多少?
(Ⅱ)若进行该项实验需要这种产品100个,为保证实验的顺利进行,则至少要购进多少件这样的产品?
5 5 12 12
,按要求只有两项技术指标都达标的产品才能用于该实验(称为合格品),
(Ⅰ)设A、B两项技术指标达标的概率分别为p1、p2,求一件产品经过检测为合格品的概率是多少?
(Ⅱ)若进行该项实验需要这种产品100个,为保证实验的顺利进行,则至少要购进多少件这样的产品?
11 11 12 12
12
5 |
12 |
11 |
12 |
(Ⅰ)设A、B两项技术指标达标的概率分别为p1、p2,求一件产品经过检测为合格品的概率是多少?
(Ⅱ)若进行该项实验需要这种产品100个,为保证实验的顺利进行,则至少要购进多少件这样的产品?
5 |
12 |
11 |
12 |
(Ⅰ)设A、B两项技术指标达标的概率分别为p1、p2,求一件产品经过检测为合格品的概率是多少?
(Ⅱ)若进行该项实验需要这种产品100个,为保证实验的顺利进行,则至少要购进多少件这样的产品?
5 |
12 |
11 |
12 |
(Ⅰ)设A、B两项技术指标达标的概率分别为p1、p2,求一件产品经过检测为合格品的概率是多少?
(Ⅱ)若进行该项实验需要这种产品100个,为保证实验的顺利进行,则至少要购进多少件这样的产品?
11 |
12 |
12
▼优质解答
答案和解析
(Ⅰ)∵有且仅有一项技术指标达标的概率为
∴有p1(1−p2)+(1−p1)p2=
…①
又至少一项技术指标达标的概率为
∴有1−(1−p2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件.
5 5 512 12 12
∴有p1(1−p2)+(1−p1)p2=
…①
又至少一项技术指标达标的概率为
∴有1−(1−p2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. p1(1−p2)+(1−p1)p2=
…①
又至少一项技术指标达标的概率为
∴有1−(1−p2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 1(1−p2)+(1−p1)p2=
…①
又至少一项技术指标达标的概率为
∴有1−(1−p2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 2)+(1−p1)p2=
…①
又至少一项技术指标达标的概率为
∴有1−(1−p2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 1)p2=
…①
又至少一项技术指标达标的概率为
∴有1−(1−p2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 2=
5 5 512 12 12…①
又至少一项技术指标达标的概率为
∴有1−(1−p2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件.
11 11 1112 12 12
∴有1−(1−p2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 1−(1−p2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 2)(1−p1)=
…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 1)=
11 11 1112 12 12…②
联立①、②得
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件.
p1+p2−2p1p2=
p1+p2−2p1p2=
p1+p2−2p1p2=
1+p2−2p1p2=
2−2p1p2=
1p2=
2=
5 5 512 12 12p1+p2−p1p2=
p1+p2−p1p2=
p1+p2−p1p2=
1+p2−p1p2=
2−p1p2=
1p2=
2=
11 11 1112 12 12
解得:p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. p1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 1p2=
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 2=
1 1 12 2 2
∴一件产品经过检测为合格品的概率为p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. p1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 1p2=
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. 2=
1 1 12 2 2
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. ξ~B(n,
1 1 12 2 2),
∴Eξ=
n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件. Eξ=
1 1 12 2 2n,
为保证实验的顺利进行,则Eξ≥100,
即
n≥100,解得:n≥200,
故至少需要购进这种产品200件.
1 1 12 2 2n≥100,解得:n≥200,
故至少需要购进这种产品200件.
5 |
12 |
∴有p1(1−p2)+(1−p1)p2=
5 |
12 |
又至少一项技术指标达标的概率为
11 |
12 |
∴有1−(1−p2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件.
5 |
12 |
∴有p1(1−p2)+(1−p1)p2=
5 |
12 |
又至少一项技术指标达标的概率为
11 |
12 |
∴有1−(1−p2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. p1(1−p2)+(1−p1)p2=
5 |
12 |
又至少一项技术指标达标的概率为
11 |
12 |
∴有1−(1−p2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 1(1−p2)+(1−p1)p2=
5 |
12 |
又至少一项技术指标达标的概率为
11 |
12 |
∴有1−(1−p2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 2)+(1−p1)p2=
5 |
12 |
又至少一项技术指标达标的概率为
11 |
12 |
∴有1−(1−p2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 1)p2=
5 |
12 |
又至少一项技术指标达标的概率为
11 |
12 |
∴有1−(1−p2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 2=
5 |
12 |
又至少一项技术指标达标的概率为
11 |
12 |
∴有1−(1−p2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件.
11 |
12 |
∴有1−(1−p2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 1−(1−p2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 2)(1−p1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 1)=
11 |
12 |
联立①、②得
|
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件.
|
p1+p2−2p1p2=
| ||
p1+p2−p1p2=
|
p1+p2−2p1p2=
| ||
p1+p2−p1p2=
|
p1+p2−2p1p2=
| ||
p1+p2−p1p2=
|
5 |
12 |
5 |
12 |
5 |
12 |
5 |
12 |
5 |
12 |
5 |
12 |
5 |
12 |
11 |
12 |
11 |
12 |
11 |
12 |
11 |
12 |
11 |
12 |
11 |
12 |
11 |
12 |
解得:p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. p1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 1p2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 2=
1 |
2 |
∴一件产品经过检测为合格品的概率为p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. p1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 1p2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. 2=
1 |
2 |
(Ⅱ)设需要购进的产品数为n,且n个产品中合格品的个数为ξ,
依题意知ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. ξ~B(n,
1 |
2 |
∴Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件. Eξ=
1 |
2 |
为保证实验的顺利进行,则Eξ≥100,
即
1 |
2 |
故至少需要购进这种产品200件.
1 |
2 |
故至少需要购进这种产品200件.
看了 某项实验研究需要一种高标准的...的网友还看了以下:
英语翻译1、负责新开发的产品测试方案,并参与制订部分产品的规范和技术标准;Responsiblef 2020-04-26 …
简述题绿色壁垒是指一些国家凭借其科技优势,以保护环境和人类健康为由,通过提高检疫的技术标准,来对国 2020-05-13 …
求翻译一句英文学者数码电子科技有限公司主要从事数码摄像机.数码相机.数码伴侣.数码配件.移动音响产 2020-05-15 …
在产品标准或工艺标准中列出有关安全的要求和指标是(46)的一种形式。A.安全标准B.技术标准C.质量 2020-05-26 …
评标开标计算公式,在wps里怎么编啊(1)未通过初步审查的投标报价不参与价格得分的计算。(2)评标 2020-06-08 …
某建设项目实行公开招标,经资格预审有5家单位参加投标,招标方拟采取综合评分法选择综合分值最高单位为 2020-06-21 …
“不应影响”和“应不影响”有何不同?意义上有区别吗?“储存环经应不影响产品符合规定标准要求.”中的“ 2020-12-08 …
阅读表,可以看出我省()2014年安徽省出口主要分类及地区分布情况指标出口额出口产品出口地区机电产品 2020-12-13 …
2015年9月,坐落于长春硅谷大街的某著名科技有限公司,凭借向市场监管局申请的注册商标专用权质权登记 2020-12-27 …
英语翻译21世纪的经济是一个知识的经济,品牌决胜的经济,技术与品牌代表着企业的竞争能力,竞争优势决定 2020-12-29 …