早教吧作业答案频道 -->数学-->
数列满足a1=1/3,an+1=an+a2n/n2,证明:an
题目详情
数列满足a1=1/3,an+1=an+a2n/n2,证明:an
▼优质解答
答案和解析
1.
a(n+1)=2(1+1/n)^2*an
a(n+1)=2[(n+1)/n]^2*an
a(n+1)/(n+1)^2=2*an/n^2
则an/n^2是首项为a1/1^2=a1=2,公比为2的等比数列.
an/n^2=2*2^(n-1)=2^n
an=(2^n)n^2.
2.
bn=an/n=n2^n
sn=1*2^1+2*2^2+3*2^3+……+(n-2)2^(n-2)+(n-1)2^(n-1)+n2^n
2sn=1*2^2+2*2^3+3*2^4+……+(n-2)2^(n-1)+(n-1)2^n+n2^(n+1)
两式相减:
-sn=2^1+2^2+2^3+……+2^(n-2)+2^(n-1)+2^n-n2^(n+1)
=2(2^n-1)/(2-1)-n2^(n+1)
=2^(n+1)-2-n2^(n+1)
=-2+(1-n)2^(n+1)
sn=2+(n-1)2^(n+1)
a(n+1)=2(1+1/n)^2*an
a(n+1)=2[(n+1)/n]^2*an
a(n+1)/(n+1)^2=2*an/n^2
则an/n^2是首项为a1/1^2=a1=2,公比为2的等比数列.
an/n^2=2*2^(n-1)=2^n
an=(2^n)n^2.
2.
bn=an/n=n2^n
sn=1*2^1+2*2^2+3*2^3+……+(n-2)2^(n-2)+(n-1)2^(n-1)+n2^n
2sn=1*2^2+2*2^3+3*2^4+……+(n-2)2^(n-1)+(n-1)2^n+n2^(n+1)
两式相减:
-sn=2^1+2^2+2^3+……+2^(n-2)+2^(n-1)+2^n-n2^(n+1)
=2(2^n-1)/(2-1)-n2^(n+1)
=2^(n+1)-2-n2^(n+1)
=-2+(1-n)2^(n+1)
sn=2+(n-1)2^(n+1)
看了 数列满足a1=1/3,an+...的网友还看了以下:
数列{an}的前n项和Sn=2n-1 ,数列{bn}满足b1=3 ,bn+1=an+bn(n 属于 2020-04-06 …
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
已知数列{an}满足an=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(2n)1. 2020-05-22 …
数列a1=1,ana(n+1)=2^2,bn=3an{an-1/3*2^n}是等比数列已证明1.数 2020-06-02 …
如何用MATLAB构造满足某条件的N*(N-1)的列满秩矩阵I(n)=(1,.,1)是个1*n的向 2020-06-27 …
证明若数列{Un}{Vn}为正数列,满足Un+1/Un≥Vn+1/Vn证明:若∑证明若数列{Un} 2020-07-31 …
(本小题满分14分)已知函数(1)当时,证明:不等式恒成立;(2)若数列满足,证明数列是等比数列, 2020-08-03 …
(本小题满分13分)若数列满足:(1);(2);(3),则称数列为“和谐”数列.(Ⅰ)验证数列,其中 2020-11-01 …
f(x)=(x+3)/(x+1)(x≠-1),数列|bn|满足bn=|an-√3|函数数列综合问题: 2020-11-19 …
已知f(x)=(x-1)平方,g(x)=4(x-1),数列an满足a1=2,已知f(x)=(x-1) 2020-11-27 …