早教吧作业答案频道 -->英语-->
判断以下命题的错对,去证明你的答案!a)Thesetofallvectorsoftheform(a,b,c)withb=a+cisasubspaceofR3.b)Thesetofalln*nmatricesAsuchthatdet(A)=0isasubspaceofMnn.c)Thesetofallpolynomialsoftheforma0+a1x+a2x^2
题目详情
判断以下命题的错对,去证明你的答案!
a)The set of all vectors of the form(a,b,c) with b=a+c is a subspace of R3.
b)The set of all n*n matrices A such that det(A)=0 is a subspace of Mnn.
c)The set of all polynomials of the form a0+a1x+a2x^2+a3x^3 in which a0,a1,a2,a3,are integers is a subspace of P3.
大概翻译如下:
a)所有的向量集形式(a,b,c)与b= a+ c是R3的子空间.
b)所有的n* n矩阵的集合,这样一个det(A)= 0是一个子空间Mnn.
c)A0形式的所有多项式集+ a1x a2x^2+ a3x^3,其中a0,a1,a2,a3,都是整数是P3的子空间.
a)The set of all vectors of the form(a,b,c) with b=a+c is a subspace of R3.
b)The set of all n*n matrices A such that det(A)=0 is a subspace of Mnn.
c)The set of all polynomials of the form a0+a1x+a2x^2+a3x^3 in which a0,a1,a2,a3,are integers is a subspace of P3.
大概翻译如下:
a)所有的向量集形式(a,b,c)与b= a+ c是R3的子空间.
b)所有的n* n矩阵的集合,这样一个det(A)= 0是一个子空间Mnn.
c)A0形式的所有多项式集+ a1x a2x^2+ a3x^3,其中a0,a1,a2,a3,都是整数是P3的子空间.
▼优质解答
答案和解析
a)right
proof:
Let D denote the set of all vectors of the form (a,b,c) with b=a+c.
Take two arbitrary elements from D ,denoted by p1=(a1,b1,c1) and p2=(a2,b2,c2) .
For any real numbers x and y,we have xb1+yb2=x(a1+c1)+y(a2+c2)=(xa1+xc1)+(ya2+yc2)
Then xp1+yp2=x(a1,b1,c1)+y(a2,b2,c2)=(xa1+ya2,xb1+yb2,xc1+yc2) is in D.
Hence D is a subspace of R3.
b)wrong
proof:
Give a counterexample:
let A=[1,1,...,1;0,0,...,0;.;0,0,...,0] and B=[0,0,...,0;1,2,...,n;2,3,...,n,1;3,4,...,n,1,2;...;n-1,n,1,...,n-2]
Thus det(A)=det(B)=0,but det(A+B)≠0.
Hence the set of all n*n matrices A such that det(A)=0 is not a subspace of Mnn.
c)wrong
Denote the set of all polynomials of the form a0+a1x+a2x^2+a3x^3 in which a0,a1,a2,a3,are integers by D.
let f=a0+a1x+a2x^2+a3x^3 and g=b0+b1x+b2x^2+b3x^3
take p=1/(2a0) and q=1/(3b0)
then the constant term of pf+qg=1/6
so pf+qg is not in D,whence D is not a subspace of P3.
proof:
Let D denote the set of all vectors of the form (a,b,c) with b=a+c.
Take two arbitrary elements from D ,denoted by p1=(a1,b1,c1) and p2=(a2,b2,c2) .
For any real numbers x and y,we have xb1+yb2=x(a1+c1)+y(a2+c2)=(xa1+xc1)+(ya2+yc2)
Then xp1+yp2=x(a1,b1,c1)+y(a2,b2,c2)=(xa1+ya2,xb1+yb2,xc1+yc2) is in D.
Hence D is a subspace of R3.
b)wrong
proof:
Give a counterexample:
let A=[1,1,...,1;0,0,...,0;.;0,0,...,0] and B=[0,0,...,0;1,2,...,n;2,3,...,n,1;3,4,...,n,1,2;...;n-1,n,1,...,n-2]
Thus det(A)=det(B)=0,but det(A+B)≠0.
Hence the set of all n*n matrices A such that det(A)=0 is not a subspace of Mnn.
c)wrong
Denote the set of all polynomials of the form a0+a1x+a2x^2+a3x^3 in which a0,a1,a2,a3,are integers by D.
let f=a0+a1x+a2x^2+a3x^3 and g=b0+b1x+b2x^2+b3x^3
take p=1/(2a0) and q=1/(3b0)
then the constant term of pf+qg=1/6
so pf+qg is not in D,whence D is not a subspace of P3.
看了 判断以下命题的错对,去证明你...的网友还看了以下:
已知下列命题:①若R,且kb=0,则k=-0或b=0;②若a·b=0,则a=0或b=0;③若不平行 2020-04-08 …
⒈运算规定:(a*b)=|a-b| a,b为实数,求(√7*3)+√7 ⒉设⒈运算规定:(a*b) 2020-05-13 …
定义集合A*B={x|x∈A且x不属于B},若A={1,3,5,7},B={2,3,5},则: ( 2020-05-15 …
当a、b满足什么条件时,下列关系成立:(1)|a+b|=|a|+|b|;(2)|a+b|=||a| 2020-06-12 …
设a,b,c∈R,证明a^2acc^23b(abc)≥0,并指出等号何时成立问题补充:证明:不妨设 2020-06-23 …
公式a*b/(a-1)还能解吗公式a*b*(a-1)=a*b*a-a*b这个成立,公式a*b/(a 2020-07-17 …
在你2011-08-13有一题的解答我有点不懂设a,b属于R,集合A中有3元素,1,a+b,a,集 2020-07-20 …
已知向量a与b反向,下列等式成立的是:A:|a|-|b|=|a-b|B:|a+b|=|a-b已知向 2020-07-30 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
数学绝对值不等式|a|-|b|≤|a±b|≤|a|+|b|中的±要怎么理解|a|-|b|≤|a±b 2020-08-03 …