早教吧作业答案频道 -->英语-->
判断以下命题的错对,去证明你的答案!a)Thesetofallvectorsoftheform(a,b,c)withb=a+cisasubspaceofR3.b)Thesetofalln*nmatricesAsuchthatdet(A)=0isasubspaceofMnn.c)Thesetofallpolynomialsoftheforma0+a1x+a2x^2
题目详情
判断以下命题的错对,去证明你的答案!
a)The set of all vectors of the form(a,b,c) with b=a+c is a subspace of R3.
b)The set of all n*n matrices A such that det(A)=0 is a subspace of Mnn.
c)The set of all polynomials of the form a0+a1x+a2x^2+a3x^3 in which a0,a1,a2,a3,are integers is a subspace of P3.
大概翻译如下:
a)所有的向量集形式(a,b,c)与b= a+ c是R3的子空间.
b)所有的n* n矩阵的集合,这样一个det(A)= 0是一个子空间Mnn.
c)A0形式的所有多项式集+ a1x a2x^2+ a3x^3,其中a0,a1,a2,a3,都是整数是P3的子空间.
a)The set of all vectors of the form(a,b,c) with b=a+c is a subspace of R3.
b)The set of all n*n matrices A such that det(A)=0 is a subspace of Mnn.
c)The set of all polynomials of the form a0+a1x+a2x^2+a3x^3 in which a0,a1,a2,a3,are integers is a subspace of P3.
大概翻译如下:
a)所有的向量集形式(a,b,c)与b= a+ c是R3的子空间.
b)所有的n* n矩阵的集合,这样一个det(A)= 0是一个子空间Mnn.
c)A0形式的所有多项式集+ a1x a2x^2+ a3x^3,其中a0,a1,a2,a3,都是整数是P3的子空间.
▼优质解答
答案和解析
a)right
proof:
Let D denote the set of all vectors of the form (a,b,c) with b=a+c.
Take two arbitrary elements from D ,denoted by p1=(a1,b1,c1) and p2=(a2,b2,c2) .
For any real numbers x and y,we have xb1+yb2=x(a1+c1)+y(a2+c2)=(xa1+xc1)+(ya2+yc2)
Then xp1+yp2=x(a1,b1,c1)+y(a2,b2,c2)=(xa1+ya2,xb1+yb2,xc1+yc2) is in D.
Hence D is a subspace of R3.
b)wrong
proof:
Give a counterexample:
let A=[1,1,...,1;0,0,...,0;.;0,0,...,0] and B=[0,0,...,0;1,2,...,n;2,3,...,n,1;3,4,...,n,1,2;...;n-1,n,1,...,n-2]
Thus det(A)=det(B)=0,but det(A+B)≠0.
Hence the set of all n*n matrices A such that det(A)=0 is not a subspace of Mnn.
c)wrong
Denote the set of all polynomials of the form a0+a1x+a2x^2+a3x^3 in which a0,a1,a2,a3,are integers by D.
let f=a0+a1x+a2x^2+a3x^3 and g=b0+b1x+b2x^2+b3x^3
take p=1/(2a0) and q=1/(3b0)
then the constant term of pf+qg=1/6
so pf+qg is not in D,whence D is not a subspace of P3.
proof:
Let D denote the set of all vectors of the form (a,b,c) with b=a+c.
Take two arbitrary elements from D ,denoted by p1=(a1,b1,c1) and p2=(a2,b2,c2) .
For any real numbers x and y,we have xb1+yb2=x(a1+c1)+y(a2+c2)=(xa1+xc1)+(ya2+yc2)
Then xp1+yp2=x(a1,b1,c1)+y(a2,b2,c2)=(xa1+ya2,xb1+yb2,xc1+yc2) is in D.
Hence D is a subspace of R3.
b)wrong
proof:
Give a counterexample:
let A=[1,1,...,1;0,0,...,0;.;0,0,...,0] and B=[0,0,...,0;1,2,...,n;2,3,...,n,1;3,4,...,n,1,2;...;n-1,n,1,...,n-2]
Thus det(A)=det(B)=0,but det(A+B)≠0.
Hence the set of all n*n matrices A such that det(A)=0 is not a subspace of Mnn.
c)wrong
Denote the set of all polynomials of the form a0+a1x+a2x^2+a3x^3 in which a0,a1,a2,a3,are integers by D.
let f=a0+a1x+a2x^2+a3x^3 and g=b0+b1x+b2x^2+b3x^3
take p=1/(2a0) and q=1/(3b0)
then the constant term of pf+qg=1/6
so pf+qg is not in D,whence D is not a subspace of P3.
看了 判断以下命题的错对,去证明你...的网友还看了以下:
你能不能别叫我小明?你看看看以下内容是否解决了您的疑问:妈妈对小明说:“我的耳朵都快被你震聋了,你 2020-05-13 …
比较级和最高级he never felt____ desire to read his son"s 2020-05-17 …
小明站在船板上用力拉固定在大树上的绳子使船匀速向岸边靠近,则下列说法正确的是A小明对船没有做工B绳 2020-06-07 …
有理数问题:结合具体的数,通过特例进行归纳,然后判断下列说法的对错,认为对,说明理由;认...有理 2020-06-11 …
在学习了多边形的内角和后小明和小艳有一段对话如下:这个多边形的内角和是2750°.不对呀,仔细在学 2020-06-16 …
在学习了“多边形的内角和"后小明和小艳有一段对话如下在学习了多边形的内角和后小明和小艳有一段对话如 2020-06-16 …
阅读下面的作品,完成下列各题。中国人之聪明林语堂①聪明系与糊涂相对而言。郑板桥曰“难得糊”,“聪明 2020-06-28 …
小对联.急白云对()朝霞对()采菊对()下雨对()聪明对()明月对()青山对()长江对()三分天下 2020-07-23 …
急!求一本辩论书记得一块内容说不对不对第二个不对证明第一个不对是对的那么接下去下一个对又证明上一个是 2020-12-05 …
时下的许多青少年都喜欢把一些影视、体育明星当做自己崇拜的对象。下列对这种现象认识不正确的是()A.大 2020-12-16 …