早教吧作业答案频道 -->数学-->
导数利用单调性证明不等式Inx<x<e^x,x>0恒成立证明Inx<x<e^x,
题目详情
【导数】利用单调性证明不等式 In x<x<e^x ,x>0恒成立
证明 In x<x<e^x ,
证明 In x<x<e^x ,
▼优质解答
答案和解析
f(x)=lnx,g(x)=e^x
做与直线y=x平行且分别于f(x)=lnx,g(x)=e^x
相切的直线l1:y=x+m,l2:y=x+n
f'(x)=1/x,令f'(x)=1即1/x=1 ==>x=1,f(1)=0
h'(x)=e^x,e^x=1==>x=0,y=1
l1:y=x-1,l2:y=x+1
u(x)= f(x)-x+1=lnx-x+1,u'(x)=1/x-1=(1-x)/x
00,∴v(x)为增函数
v(x)>v(0)=0∴e^x-x-1>0
==> e^x>x+1
又 x-1< xlnx≤x/e
做与直线y=x平行且分别于f(x)=lnx,g(x)=e^x
相切的直线l1:y=x+m,l2:y=x+n
f'(x)=1/x,令f'(x)=1即1/x=1 ==>x=1,f(1)=0
h'(x)=e^x,e^x=1==>x=0,y=1
l1:y=x-1,l2:y=x+1
u(x)= f(x)-x+1=lnx-x+1,u'(x)=1/x-1=(1-x)/x
00,∴v(x)为增函数
v(x)>v(0)=0∴e^x-x-1>0
==> e^x>x+1
又 x-1< xlnx≤x/e
看了 导数利用单调性证明不等式In...的网友还看了以下:
20092009已知f(x)=∑|x+i|+∑|x-i|(x∈R)且f(a^2-3a+2)=f(a 2020-05-13 …
解分式方程:1/X-2+1/X-6=1/X-7+1/X-11/X-2+1/X-6=1/X-7+1/ 2020-05-16 …
一个“整式的乘法”的问题请先阅读下列解题过程,再仿做下面的问题.已知X*X+X-1=0,求X*X* 2020-05-19 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
关于arctan积分的问题我们都知道∫1/(x^2+1)dx=arctanx+C但是如果分解x^2 2020-06-13 …
1.7/x²-1+8/x²-2x=37-9x/x^3-x²-x+12.3/x²+x-2=x/x-1 2020-07-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
当M=时,方程X-X-I/X+2=M/X+2会产生增根 2020-07-31 …
一道挺难的数学题i*i=-1则x*x=-1可变为x=+i或-ii还具有以下性质:i=ii*i=-1i 2020-11-01 …