早教吧作业答案频道 -->数学-->
在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1
题目详情
在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.

(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.

(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.
▼优质解答
答案和解析
(1)AC′=BD′,∠AMB=α,
证明:在矩形ABCD中,AC=BD,OA=OC=
AC,OB=OD=
BD,
∴OA=OC=OB=OD,
又∵OD=OD′,OC=OC′,
∴OB=OD′=OA=OC′,
∵∠D′OD=∠C′OC,
∴180°-∠D′OD=180°-∠C′OC,
∴∠BOD′=∠AOC′,
∴△BOD′≌△AOC′,
∴BD′=AC′,
∴∠OBD′=∠OAC′,
设BD′与OA相交于点N,
∴∠BNO=∠ANM,
∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO,
即∠AMB=∠AOB=∠COD=α,
综上所述,BD′=AC′,∠AMB=α,

(2)AC′=kBD′,∠AMB=α,
证明:∵在平行四边形ABCD中,OB=OD,OA=OC,
又∵OD=OD′,OC=OC′,
∴OC'=OA,OD′=OB,
∵∠D′OD=∠C′OC,
∴180°-∠D′OD=180°-∠C′OC,
∴∠BOD′=∠AOC′,
∴△BOD′∽△AOC′,
∴BD′:AC′=OB:OA=BD:AC,
∵AC=kBD,
∴AC′=kBD′,
∵△BOD′∽△AOC′,
设BD′与OA相交于点N,
∴∠BNO=∠ANM,
∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO,即∠AMB=∠AOB=α,
综上所述,AC′=kBD′,∠AMB=α,
(3)AC′=BD′成立,∠AMB=α不成立.
证明:在矩形ABCD中,AC=BD,OA=OC=
| 1 |
| 2 |
| 1 |
| 2 |
∴OA=OC=OB=OD,
又∵OD=OD′,OC=OC′,
∴OB=OD′=OA=OC′,
∵∠D′OD=∠C′OC,
∴180°-∠D′OD=180°-∠C′OC,
∴∠BOD′=∠AOC′,
∴△BOD′≌△AOC′,
∴BD′=AC′,
∴∠OBD′=∠OAC′,
设BD′与OA相交于点N,
∴∠BNO=∠ANM,
∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO,
即∠AMB=∠AOB=∠COD=α,
综上所述,BD′=AC′,∠AMB=α,

(2)AC′=kBD′,∠AMB=α,
证明:∵在平行四边形ABCD中,OB=OD,OA=OC,
又∵OD=OD′,OC=OC′,
∴OC'=OA,OD′=OB,
∵∠D′OD=∠C′OC,
∴180°-∠D′OD=180°-∠C′OC,
∴∠BOD′=∠AOC′,
∴△BOD′∽△AOC′,
∴BD′:AC′=OB:OA=BD:AC,
∵AC=kBD,
∴AC′=kBD′,
∵△BOD′∽△AOC′,
设BD′与OA相交于点N,
∴∠BNO=∠ANM,
∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO,即∠AMB=∠AOB=α,
综上所述,AC′=kBD′,∠AMB=α,
(3)AC′=BD′成立,∠AMB=α不成立.
看了 在四边形ABCD中,对角线A...的网友还看了以下:
如图所示,在等边三角形ABC的三个顶点上,固定三个正点电荷,电量的大小q′<q.则三角形ABC的几 2020-04-11 …
如图所示,在等边三角形ABC的三个顶点上,固定三个正点电荷,电量的大小q′<q.则三角形ABC的几 2020-04-11 …
对于任意一个矩形A,令另一个矩形B的周长和面积分别是矩形A周长和面积的2倍(1)当矩形A的边长分别 2020-05-13 …
有关“接近度”的数学问题设矩形相邻两条边长分别为a和b(a小于等于b),将矩形的“接近度”定义为a 2020-06-19 …
矩阵A的平方等于矩阵B的平方,那么A和B相等吗 2020-06-20 …
(2012•昌平区二模)如图为某种淡水浮游动物垂直移栖的统计图示,多边形的宽度为不同深处的个体相对 2020-06-29 …
划去矩阵A的某一行得到矩阵B,则矩阵的A秩等于矩阵B的秩的充要条件是所划去的行可用其余的行线性表示 2020-07-12 …
设矩阵A,B均为n阶方阵,证明:(1)矩阵AB的秩等于矩阵B的秩的充要条件方程组ABx=0和Bx= 2020-07-31 …
1.在△ABC中,AB=AC,DE是AB的垂直平分线,分别交AB、AC于点E、D,若∠BAC=40 2020-08-01 …
(2011•绵阳)下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四 2020-11-12 …