早教吧 育儿知识 作业答案 考试题库 百科 知识分享

∫(01)x(arctanx)^2dx

题目详情
∫(0 1)x(arctanx)^2dx
▼优质解答
答案和解析
∫[0→1] xarctan²x dx
=(1/2)∫[0→1] arctan²x d(x²)
=(1/2)x²arctan²x - ∫[0→1] x²arctanx/(1+x²) dx
=(1/2)x²arctan²x - ∫[0→1] (x²+1-1)arctanx/(1+x²) dx
=(1/2)x²arctan²x - ∫[0→1] arctanx dx + ∫[0→1] arctanx/(1+x²) dx
中间那个积分用分部积分,第三个积分直接凑微分
=(1/2)x²arctan²x - xarctanx + ∫[0→1] x/(1+x²) dx + ∫[0→1] arctanx d(arctanx)
=(1/2)x²arctan²x - xarctanx + (1/2)∫[0→1] 1/(1+x²) d(x²) + (1/2)arctan²x
=(1/2)x²arctan²x - xarctanx + (1/2)ln(1+x²) + (1/2)arctan²x |[0→1]
=(1/2)(π/4)² - π/4 + (1/2)ln2 + (1/2)(π/4)²
=π²/16 - π/4 + (1/2)ln2
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.