早教吧作业答案频道 -->数学-->
如图1,含30°角的直角三角板DEF(∠EDF=30°)与含45°角的直角三角板的斜边在同一直线上,D为BC的中点,将直角三角板DEF绕点D按逆时针方向旋转∠α(0°
题目详情
如图1,含30°角的直角三角板DEF(∠EDF=30°)与含45°角的直角三角板的斜边在同一直线上,D为BC的中点,将直角三角板DEF绕点D按逆时针方向旋转∠α(0°(1)如图2,当∠α=___°时,DE∥AB;当∠α=___°时,DE⊥AB;
(2)如图3,当直角三角板DEF的边DF、DE分别交BA、CA的延长线于点M、N时:
①∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数的和;若变化,请说明理由;
②若使得∠1=2∠2,求出∠1、∠2的度数,并直接写出此时∠α的度数;
③若使得∠1≥
∠2,求∠α的度数范围.
∠2,求∠α的度数范围.
2 3 2 2 3 3 
(2)如图3,当直角三角板DEF的边DF、DE分别交BA、CA的延长线于点M、N时:
①∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数的和;若变化,请说明理由;
②若使得∠1=2∠2,求出∠1、∠2的度数,并直接写出此时∠α的度数;
③若使得∠1≥
2 |
3 |

2 |
3 |

2 |
3 |

▼优质解答
答案和解析
(1)∵∠B=45°,
∴当∠EDC=∠B=45°时,DE∥AB,
而∠EDF=30°,
∴30°+α=45°,解得α=15°;
当DE∥AC时,DE⊥AB,
此时∠C+∠EDC=180°,
∴30°+α+45°=180°,解得α=105°;
故答案为15°,105°;
(2)①∠1与∠2度数的和不变.
连结MN,如图3,
在△AMN中,∵∠ANM+∠AMN+∠MAN=180°,
∴∠ANM+∠AMN=90°,
在△MND中,∵∠DNM+∠DMN+∠MDN=180°,
即∠2+∠ANM+∠AMN+∠1+∠MDN=180°,
∴∠1+∠2=180°-90°-30°=60°;
②根据题意得
,解得
;
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
∠2,∠1+∠2=60°,
∴∠1≥
(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
∠1+∠2=60° ∠1=2∠2 ∠1+∠2=60° ∠1+∠2=60° ∠1+∠2=60°∠1=2∠2 ∠1=2∠2 ∠1=2∠2 ,解得
;
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
∠2,∠1+∠2=60°,
∴∠1≥
(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
∠1=40° ∠2=20° ∠1=40° ∠1=40° ∠1=40°∠2=20° ∠2=20° ∠2=20° ;
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
∠2,∠1+∠2=60°,
∴∠1≥
(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
2 3 2 2 23 3 3∠2,∠1+∠2=60°,
∴∠1≥
(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
2 3 2 2 23 3 3(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.

∴当∠EDC=∠B=45°时,DE∥AB,
而∠EDF=30°,
∴30°+α=45°,解得α=15°;
当DE∥AC时,DE⊥AB,
此时∠C+∠EDC=180°,
∴30°+α+45°=180°,解得α=105°;
故答案为15°,105°;
(2)①∠1与∠2度数的和不变.
连结MN,如图3,
在△AMN中,∵∠ANM+∠AMN+∠MAN=180°,
∴∠ANM+∠AMN=90°,
在△MND中,∵∠DNM+∠DMN+∠MDN=180°,
即∠2+∠ANM+∠AMN+∠1+∠MDN=180°,
∴∠1+∠2=180°-90°-30°=60°;
②根据题意得
|
|
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
2 |
3 |
∴∠1≥
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
|
∠1+∠2=60° |
∠1=2∠2 |
∠1+∠2=60° |
∠1=2∠2 |
∠1+∠2=60° |
∠1=2∠2 |
∠1+∠2=60° |
∠1=2∠2 |
|
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
2 |
3 |
∴∠1≥
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
|
∠1=40° |
∠2=20° |
∠1=40° |
∠2=20° |
∠1=40° |
∠2=20° |
∠1=40° |
∠2=20° |
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
2 |
3 |
∴∠1≥
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
2 |
3 |
∴∠1≥
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
看了 如图1,含30°角的直角三角...的网友还看了以下:
1.直线在平面外,则直线与平面相交或平行.这句话对吗?2.面面垂直可以推出两个平面内的任意直线都垂 2020-05-13 …
两条直线互相垂直一定要在同一平面内吗?我发现两条直线在同一平面内会相交成直角,在不同平面内有时也会 2020-05-13 …
设直线l的方程为(a+1)x+y-2-a=0(x∈R)若直线l在两坐标轴上的截距相等,求l方程.: 2020-05-16 …
如图所示,是一个轻质的倒“L”直角尺AOB的示意图.其中OA=0.5m,直尺平面与地面相垂直,在直 2020-05-17 …
2012上海)如图,将质量m=0.1kg的圆环套在固定的水平直杆上.环的直径略大于杆的截面直径在固 2020-05-17 …
在同一平面内不相交的两条直线叫做().如果两条直线相交成直角,就说这两条直线(),在同一平面内不相 2020-06-02 …
点P在直线l,m外.(1)过P作直线与直线l,m相交,可得到多少同位角,内错角,同旁内角?(2)思 2020-07-23 …
1.判断下列说法是否正确(1)两条平行直线在同一平面内的射影一定是平行直线()(2)两条相交直线在 2020-07-30 …
如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且 2020-12-19 …
将直尺水平地固定在木板上,紧靠直尺在直尺左端下方P点钉一个图钉,使木板竖直放置,将系有小球的细线挂在 2021-01-15 …