早教吧作业答案频道 -->数学-->
如图1,含30°角的直角三角板DEF(∠EDF=30°)与含45°角的直角三角板的斜边在同一直线上,D为BC的中点,将直角三角板DEF绕点D按逆时针方向旋转∠α(0°
题目详情
如图1,含30°角的直角三角板DEF(∠EDF=30°)与含45°角的直角三角板的斜边在同一直线上,D为BC的中点,将直角三角板DEF绕点D按逆时针方向旋转∠α(0°(1)如图2,当∠α=___°时,DE∥AB;当∠α=___°时,DE⊥AB;
(2)如图3,当直角三角板DEF的边DF、DE分别交BA、CA的延长线于点M、N时:
①∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数的和;若变化,请说明理由;
②若使得∠1=2∠2,求出∠1、∠2的度数,并直接写出此时∠α的度数;
③若使得∠1≥
∠2,求∠α的度数范围.
∠2,求∠α的度数范围.
2 3 2 2 3 3 
(2)如图3,当直角三角板DEF的边DF、DE分别交BA、CA的延长线于点M、N时:
①∠1与∠2度数的和是否变化?若不变,求出∠1与∠2度数的和;若变化,请说明理由;
②若使得∠1=2∠2,求出∠1、∠2的度数,并直接写出此时∠α的度数;
③若使得∠1≥
2 |
3 |

2 |
3 |

2 |
3 |

▼优质解答
答案和解析
(1)∵∠B=45°,
∴当∠EDC=∠B=45°时,DE∥AB,
而∠EDF=30°,
∴30°+α=45°,解得α=15°;
当DE∥AC时,DE⊥AB,
此时∠C+∠EDC=180°,
∴30°+α+45°=180°,解得α=105°;
故答案为15°,105°;
(2)①∠1与∠2度数的和不变.
连结MN,如图3,
在△AMN中,∵∠ANM+∠AMN+∠MAN=180°,
∴∠ANM+∠AMN=90°,
在△MND中,∵∠DNM+∠DMN+∠MDN=180°,
即∠2+∠ANM+∠AMN+∠1+∠MDN=180°,
∴∠1+∠2=180°-90°-30°=60°;
②根据题意得
,解得
;
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
∠2,∠1+∠2=60°,
∴∠1≥
(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
∠1+∠2=60° ∠1=2∠2 ∠1+∠2=60° ∠1+∠2=60° ∠1+∠2=60°∠1=2∠2 ∠1=2∠2 ∠1=2∠2 ,解得
;
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
∠2,∠1+∠2=60°,
∴∠1≥
(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
∠1=40° ∠2=20° ∠1=40° ∠1=40° ∠1=40°∠2=20° ∠2=20° ∠2=20° ;
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
∠2,∠1+∠2=60°,
∴∠1≥
(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
2 3 2 2 23 3 3∠2,∠1+∠2=60°,
∴∠1≥
(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
2 3 2 2 23 3 3(60°-∠1),
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.

∴当∠EDC=∠B=45°时,DE∥AB,
而∠EDF=30°,
∴30°+α=45°,解得α=15°;
当DE∥AC时,DE⊥AB,
此时∠C+∠EDC=180°,
∴30°+α+45°=180°,解得α=105°;
故答案为15°,105°;
(2)①∠1与∠2度数的和不变.
连结MN,如图3,
在△AMN中,∵∠ANM+∠AMN+∠MAN=180°,
∴∠ANM+∠AMN=90°,
在△MND中,∵∠DNM+∠DMN+∠MDN=180°,
即∠2+∠ANM+∠AMN+∠1+∠MDN=180°,
∴∠1+∠2=180°-90°-30°=60°;
②根据题意得
|
|
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
2 |
3 |
∴∠1≥
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
|
∠1+∠2=60° |
∠1=2∠2 |
∠1+∠2=60° |
∠1=2∠2 |
∠1+∠2=60° |
∠1=2∠2 |
∠1+∠2=60° |
∠1=2∠2 |
|
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
2 |
3 |
∴∠1≥
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
|
∠1=40° |
∠2=20° |
∠1=40° |
∠2=20° |
∠1=40° |
∠2=20° |
∠1=40° |
∠2=20° |
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=40°+90°,
∴α=85°;
③∵∠1≥
2 |
3 |
∴∠1≥
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
2 |
3 |
∴∠1≥
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
2 |
3 |
∴∠1≥24°,
∵∠C+∠MDC=∠1+∠MAC,
即45°+α=∠1+90°,
∴∠1=α-45°,
∴α-45°≥24°,解得α≥69°,
∴∠α的度数范围为69°≤α<90°.
看了 如图1,含30°角的直角三角...的网友还看了以下:
高一数序设f(x)是R上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x1、求f( 2020-04-27 …
将正方形ABCD绕中心O顺时针旋转角α得到正方形A1B1C1D1.如图1所示.(1)当α=45°时 2020-05-16 …
物体在粗糙的水平面上运动,其位移-时间图线如图所示,已知物体沿运动方向受到恒定的拉力为F,物体在运 2020-05-17 …
如图所示,用水平力F把一铁块紧压在墙上不动,当F的大小变化时,墙对铁块的压力FN、铁块所受摩擦力F 2020-05-17 …
已知f(x)是定义在R上的奇函数,f(x+2)=-f(x).且当0≤x≤1时,f(x)=(x)1. 2020-05-21 …
关于辨别方向的问题?如果以钟表的构架为图,上北(12)下南(6)左西(9)右东(3)辨别方向的时候 2020-06-07 …
急求助设f(x)使R上的偶函数,当0小于等于x小于等于2时,y=x,当x大于2时,f(x)的图象是 2020-06-26 …
如图中,钟表的分针长10厘米,时针长8厘米.(1)从1时到2时,分针的尖端所走的路程是多少厘米?( 2020-07-31 …
急十万火急就要交了已知y=f〔x〕的定义域为〔1,4〕,f〔1〕=2,f〔2〕=3,当x∈〔1,2〕 2020-12-19 …
函数f[x]=logaXa大于0,且a不等于1,在2,3上最大值为1,则a=当a大于1时,f(x)图 2021-01-15 …