早教吧作业答案频道 -->数学-->
设A为n阶矩阵,A≠0但A的3方=0,证明A不能相似对角化.
题目详情
设A为n阶矩阵,A≠0但A的3方=0,证明A不能相似对角化.
▼优质解答
答案和解析
反设A可相似对角化,则存在可逆矩阵C和对角矩阵D使A=C^(-1)*D*C
A^3=C^(-1)*D^3*C=0,所以D^3=0,因为C是可逆矩阵.
但这样的话,D=0,从而A=0,与题目条件矛盾.
故A不可相似对角化.
A^3=C^(-1)*D^3*C=0,所以D^3=0,因为C是可逆矩阵.
但这样的话,D=0,从而A=0,与题目条件矛盾.
故A不可相似对角化.
看了 设A为n阶矩阵,A≠0但A的...的网友还看了以下:
1.n阶方阵,A,B满足AB=A+B,且A-E可逆,求(A-E)^-1=2.如果2阶矩阵A的特征值 2020-04-12 …
线性代数的几道题目~1-4为判断题并说明理由,5题是填空题~1.设A,B均为n阶对称方阵,则AB= 2020-05-13 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
判断题:1设A,B是同阶对称矩阵,则AB也是对称矩阵.()2设n阶方阵A,B,C满足关系式BCA= 2020-06-18 …
设A*,A^-1为阶方阵A的伴随阵、逆矩阵,则|A*A^-1|=设A*,A^-1为n阶方阵A的伴随 2020-06-18 …
1.设四阶方阵A=(a1,a2,a3,a4),且a1,a2,a3线性无关,a4=a1+a2+a3, 2020-07-09 …
n阶方阵A满足A^2=O,E是n阶单位阵,则A.|E-A|≠0,但|E+A|=0B|E-An阶方阵A 2020-11-02 …
若n阶方阵A满足A^2-2A+3E=0,则矩阵A可逆,且A的逆矩阵为多少?A(A-2)=-3E若n阶 2020-11-02 …
三阶方阵A有三个特征值-1,1,2且方阵A与方阵B有相同的特征值,则不正确的是A:A与B等价B:三阶 2020-11-03 …
请高手帮忙做10道线性代数1:设A为n阶方阵,下列结论中不正确的是()(A)A+AT是对称阵(B)A 2020-11-18 …