数学圆系方程证明证明:x²+y²+Dx+Ey+F+λ(Ax+By+C)=0是经过直线Ax+By+C=0与圆x²+y²+Dx+Ey+F=0的交点圆系方程
证明:x²+y²+Dx+Ey+F+λ(Ax+By+C)=0是经过直线Ax+By+C=0与圆x²+y²+Dx+Ey+F=0的交点圆系方程
这个命题成立的条件必须为:“直线Ax+By+C=0与圆x²+y²+Dx+Ey+F=0有两个交点”,下面的证明将说明这个条件必须成立:
为方便表述,记Ax+By+C=0为直线L,记x²+y²+Dx+Ey+F=0为圆O.
首先,如果x²+y²+Dx+Ey+F+λ(Ax+By+C)=0有定义,则其轨迹是圆;
其次,如果点P(x1,y1)和Q(x2,y2)是直线L与圆O的交点,则P和Q的坐标(x,y)满足x²+y²+Dx+Ey+F+λ(Ax+By+C)=0,即点P,Q在圆x²+y²+Dx+Ey+F+λ(Ax+By+C)=0上;
最后,若某个圆O1写不成“x²+y²+Dx+Ey+F+λ(Ax+By+C)=0”的形式,下面分2种情况证明圆O1不会同时过点P,Q:
如果P,Q纵坐标不等,则它一定可以写成“x²+y²+Dx+Ey+F+λ(Ax+By+C)+My+N=0,M,N至少一个非零”的形式,如果它过直线L和圆O其中一个交点P,把P点坐标代入圆O1中,化简得My1+N=0,此时把Q点坐标代入圆O1中,化简有My2+N不等于零,即圆O1不过点Q
如果P,Q横坐标不等,把圆O1写成“x²+y²+Dx+Ey+F+λ(Ax+By+C)+Mx+N=0,M,N至少一个非零”的形式,同前面的情况类似可以证出圆O1不会同时过点P,Q.
综上所有讨论,就可以证出如果直线L和圆O有两个不同交点,则过这两个交点的任何一个圆一定可以写成“x²+y²+Dx+Ey+F+λ(Ax+By+C)=0”的形式
当直线L和圆O只有一个交点时,设交点为P(r,s),如果r非零,则容易证明任何一个圆“x²+y²+Dx+Ey+F+λ(Ax+By+C)+mx-mr=0”过点P,这与你提出的命题矛盾,即要证明的命题不成立.
其实这也可以从几何上做出合理的解释:当直线L保持斜率不变逐渐远离圆心到与圆O相切的过程中,从几何形状可以判断,如果交点P,Q不等,则过P,Q的圆的圆心所称的轨迹是一条直线L1,并且这条直线不随直线L的运动而改变,一旦运动至相切,则过切点的圆的圆心可以是平面上的任意一点,但此时圆系“x²+y²+Dx+Ey+F+λ(Ax+By+C)=0”所表示的圆心轨迹却仍是L1
如图,在平面直角坐标系中,已知直线m经过点(3,0)且与x轴垂直,点A为其上一动点,直线l:y=1 2020-05-13 …
英语高手来by+时间点用法he was a millionaire by the time he 2020-05-14 …
by作"直到"时的用法就是BY的意思是”直到”时后面可以加哪些类型的词 2020-06-08 …
by+时间点与at+时间点的区别是什么 2020-06-08 …
by+时间点与at+时间点的区别是什么 2020-06-08 …
已知抛物线x=ay^2+by+c过点(0,0)和点(2,1),其中a 2020-07-29 …
高数达人请进!求∫e的sinx次幂*(x*(cosx)的三次幂-sinx)/(cosx)的平方dx 2020-07-31 …
关于直线与椭圆的问题,有耐心的进已知点p(x0,y0)是椭圆E:x^2/2+y^2=1上任意一点,直 2021-01-12 …
By的用法By+时间点,……一般怎么翻译?这个语法和At+时间点有何区别比如by11:30和at11 2021-02-12 …
by的用法Igotherebyyellowschoolbus.这句话对不对?by后直接加交通工具名称 2021-02-12 …