早教吧作业答案频道 -->数学-->
压轴题:设f(x)=xe^(-x),g(x)=ax^2-2ax+1.若f(x)≤g(x)在(1,+∞)上恒成立,求参数a的取值范围.求规范解答.望不吝赐教.更希望指导多种思路、方法.感激不尽!
题目详情
压轴题:设f(x)=xe^(-x),g(x)=ax^2-2ax+1.若f(x)≤g(x)在(1,+∞)上恒成立,求参数a的取值范围.
求规范解答.望不吝赐教.更希望指导多种思路、方法.感激不尽!
求规范解答.望不吝赐教.更希望指导多种思路、方法.感激不尽!
▼优质解答
答案和解析
“数学之美”团员448755083为你解答!
f(x) = xe^(-x)
f'(x) = e^(-x) - xe^(-x) = (1-x)e^(-x)
∵x>1
∴1-x<0
而e^(-x)>0
∴f'(x)=(1-x)e^(-x)<0
即f(x)在(1,+∞)是单调减函数
f(1)=1/e
即在(1,+∞)上恒有f(x)<1/e
要使f(x)≤g(x)在(1,+∞)上恒成立,只需要g(x)的最小值大于等于1/e就可以了
g(x)=a(x-1)²+1-a
1°当a = 0时,g(x)=1>1/e成立,故而a=0满足题意;
2°当a<0时,g(x)是一个开口向下的抛物线,在(1,+∞)上是趋近于负无穷的,因此没有最小值,故不满足题意
3°当a>0时,g(x)是一个开口向上的抛物线,对称轴为x=1,因此,可以看到g(x)在(1,+∞)也是没有最小值的,因为它的最小值取不到g(1)=1-a,故而只需要1-a≥1/e,可得0<a≤(e-1)/e
综上可知a的取值范围是[0,(e-1)/e]
对于像这样的函数不等式的问题,一般来讲有这样两种方法:
1、构造新函数求最值法,比如令u(x)=f(x)-g(x),原命题即等价于u(x)≤0在(1,+∞)上恒成立,然后对u(x)求导求得最值或特殊情况用均值不等式等方法.
2、定支法,一般来说函数不等式压轴题都是带有变参数的,那么我们一般可以将其中的某支函数的值的范围求出来,然后根据题目要求来进行,比如上面的这题,f(x)的范围可以很简单求得,那么要使g(x)大于f(x)恒成立,就只需要g(x)的最小值大于f(x)的最大值即可,g(x)的范围与参数有关,那么我们就要求得各种情况下的g(x)最小值来进行讨论.
总的来说,不管用什么方法,带有参数的题目一般都不可避免的需要讨论,分类讨论的思想是中学数学必须掌握的方法.
请采纳加赞同!
如不满意请反馈追问!
f(x) = xe^(-x)
f'(x) = e^(-x) - xe^(-x) = (1-x)e^(-x)
∵x>1
∴1-x<0
而e^(-x)>0
∴f'(x)=(1-x)e^(-x)<0
即f(x)在(1,+∞)是单调减函数
f(1)=1/e
即在(1,+∞)上恒有f(x)<1/e
要使f(x)≤g(x)在(1,+∞)上恒成立,只需要g(x)的最小值大于等于1/e就可以了
g(x)=a(x-1)²+1-a
1°当a = 0时,g(x)=1>1/e成立,故而a=0满足题意;
2°当a<0时,g(x)是一个开口向下的抛物线,在(1,+∞)上是趋近于负无穷的,因此没有最小值,故不满足题意
3°当a>0时,g(x)是一个开口向上的抛物线,对称轴为x=1,因此,可以看到g(x)在(1,+∞)也是没有最小值的,因为它的最小值取不到g(1)=1-a,故而只需要1-a≥1/e,可得0<a≤(e-1)/e
综上可知a的取值范围是[0,(e-1)/e]
对于像这样的函数不等式的问题,一般来讲有这样两种方法:
1、构造新函数求最值法,比如令u(x)=f(x)-g(x),原命题即等价于u(x)≤0在(1,+∞)上恒成立,然后对u(x)求导求得最值或特殊情况用均值不等式等方法.
2、定支法,一般来说函数不等式压轴题都是带有变参数的,那么我们一般可以将其中的某支函数的值的范围求出来,然后根据题目要求来进行,比如上面的这题,f(x)的范围可以很简单求得,那么要使g(x)大于f(x)恒成立,就只需要g(x)的最小值大于f(x)的最大值即可,g(x)的范围与参数有关,那么我们就要求得各种情况下的g(x)最小值来进行讨论.
总的来说,不管用什么方法,带有参数的题目一般都不可避免的需要讨论,分类讨论的思想是中学数学必须掌握的方法.
请采纳加赞同!
如不满意请反馈追问!
看了 压轴题:设f(x)=xe^(...的网友还看了以下:
将长12米,宽9米的长方形围城一个圆柱体(底面不围)这个圆柱体的容积最大是多少立方米?(3.14取 2020-05-20 …
人身保险与社会保险的区别是( )A.属性不同B.保险对象不同C.资金来源不同D.立法范围不同E.保险 2020-05-22 …
奥地利法学家埃里希曾说:“法发展的重心不在立法,不在法学,也不在司法判决,而在社会本身”。这句 2020-05-31 …
高数 证明不等式题当X>0时,证明不等式1+0.5x>√(1+x)恒成立.希望强大的百度网友帮帮忙 2020-06-27 …
整理资料,看到这些,希望大家尽力帮我,补全句子.论语中有一段话:子曰:“吾十有五而智于学,而立,而 2020-07-23 …
若不等式x的绝对值小于1成立时,不等式(x-(a+1))(x-(a+4))小于0也成立,求a的取值 2020-08-03 …
作文、我向往这样的生活为话题.八百字.给个开头和主题.八百字.不要很不现实的.有点内函.我希望围绕热 2020-12-15 …
阅读短文,完成练习。给自己写信的人大家或许还记得欧立希这位德国化学家,他失败了605次。才发明出“六 2020-12-22 …
阅读短文,完成练习。给自己写信的人大家或许还记得欧立希这位德国化学家,他失败了605次。才发明出“六 2020-12-22 …
古希腊哲学家亚里士多德说:“欧洲气候多寒,居民勇敢而欠技巧,能维持独立而不能治人.亚洲气候炎热,居民 2020-12-23 …