早教吧作业答案频道 -->数学-->
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.在线等速度点M在直线BC上方的抛物线上,且△BCM面积最大,求M坐标结果是1.四分之15,会的来,不急了!
题目详情
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.在线等速度
点M在直线BC上方的抛物线上,且△BCM面积最大,求M坐标

结果是1.四分之15,会的来,不急了!
点M在直线BC上方的抛物线上,且△BCM面积最大,求M坐标

结果是1.四分之15,会的来,不急了!
▼优质解答
答案和解析
A、B、C均为y=ax²+bx+c上的点
所以:
0=a-b+c……………………(1
0=9a+3b+c…………………(2)
3=c…………………………(3)
分别代(3)入(1)、(2),有:
a-b+3=0………………………(4)
3a+b+1=0……………………(5)
(4)+(5)有:4a+4=0,解得:a=-1
代入(5),有:-1-b+3=0,解得:b=2
因此,有:y=-x²+2x+3
由两点式,可得直线BC方程:(y-0)/(3-0)=(x-3)/(0-3)
整理得:x+y=3
设:点M坐标为(m,n)
因为M位于BC上方,故:m+n>3
M位于抛物线上,故:n=-m²+2m+3
M点坐标为(m,-m²+2m+3)
且:m+n=-m²+3m+3>3,即:m(m-3)<0
解得:0<m<3
设:△BCM的面积为f(m),有:
B(3,0)、C(0,3)、M(m,-m²+2m+3)
f(m)=[3×3+0×(-m²+2m+3)-3×(-m²+2m+3)-0×0-3×m]/2
f(m)=(3m²-9m)/2
f(m)=(3/2)(m²-3m)
f'(m)=3m-9/2
令:f'(m)>0,即:3m-9/2>0,解得:m>3/2
即:m>3/2时,f(m)是单调增函数;
令:f'(m)<0,即:3m-9/2<0,解得:m<3/2
即:m<3/2时,f(m)是单调减函数.
故:m=3/2时,f(m)取得最大值.
显然:0<3/2<3,故:m=3/2符合题意.
此时,有:n=-m²+2m+3=-(3/2)²+2×(3/2)+3=15/4
因此,M点坐标为(3/2,15/4).
所以:
0=a-b+c……………………(1
0=9a+3b+c…………………(2)
3=c…………………………(3)
分别代(3)入(1)、(2),有:
a-b+3=0………………………(4)
3a+b+1=0……………………(5)
(4)+(5)有:4a+4=0,解得:a=-1
代入(5),有:-1-b+3=0,解得:b=2
因此,有:y=-x²+2x+3
由两点式,可得直线BC方程:(y-0)/(3-0)=(x-3)/(0-3)
整理得:x+y=3
设:点M坐标为(m,n)
因为M位于BC上方,故:m+n>3
M位于抛物线上,故:n=-m²+2m+3
M点坐标为(m,-m²+2m+3)
且:m+n=-m²+3m+3>3,即:m(m-3)<0
解得:0<m<3
设:△BCM的面积为f(m),有:
B(3,0)、C(0,3)、M(m,-m²+2m+3)
f(m)=[3×3+0×(-m²+2m+3)-3×(-m²+2m+3)-0×0-3×m]/2
f(m)=(3m²-9m)/2
f(m)=(3/2)(m²-3m)
f'(m)=3m-9/2
令:f'(m)>0,即:3m-9/2>0,解得:m>3/2
即:m>3/2时,f(m)是单调增函数;
令:f'(m)<0,即:3m-9/2<0,解得:m<3/2
即:m<3/2时,f(m)是单调减函数.
故:m=3/2时,f(m)取得最大值.
显然:0<3/2<3,故:m=3/2符合题意.
此时,有:n=-m²+2m+3=-(3/2)²+2×(3/2)+3=15/4
因此,M点坐标为(3/2,15/4).
看了 已知抛物线y=ax2+bx+...的网友还看了以下:
超难的圆锥曲线问题有如图椭圆、双曲线和抛物线.三种曲线共焦点F(c,0),且共交于一点P(x0,y0 2020-03-30 …
将抛物线y等于括号x减一的平方减四沿直线x等于二分之三翻折,得到一条新的抛物线,求新抛物线的函数析 2020-04-06 …
各种抛光蜡的用途介绍,都有什么蜡?比如白蜡、紫蜡、黄蜡等等,还有什么?抛光什么材料用什么蜡?希望懂 2020-04-25 …
铝铸件抛丸处理工艺:ADC12的铝压铸机,用不锈钢丸抛丸处理以后,浸防腐药水浸完防腐药水后,产品颜 2020-05-16 …
求抛物线y等于负二分之一x的平方减x加二分之三的顶点坐标与对称轴并指出当x取何值时y随x的增大而增 2020-05-16 …
在研究平抛运动的实验中,A,B,C为平抛曲线上的三个点,AB,BC,之间的距离均为S,竖直高度分别 2020-05-17 …
1、在距地面25米竖直上抛一球,第一秒末及第三秒末先后经过抛出点上方15米处,试求:(1)上抛的初 2020-06-14 …
抛物线y=二分之一x平方加x减二分之三的最低坐标是? 2020-06-14 …
抛物线y2=2px的内接三角形有两边与抛物线x2=2qy相切,证明这个三角形的第三边也与x2=2q 2020-06-20 …
粤语中常有“抛不低”三个字,啥意思?比如黄家驹《长城》里有一句:“谁也冲不开,谁也抛不低”,还有《 2020-07-01 …