早教吧作业答案频道 -->数学-->
1题:用数学归纳法证明1+4+9…+n^2=1/6*n(n+1)(2n+1)2题:数学归纳法证明1*4+2*7+3*10+……+n(3n+1)=n(n+1)^2注:*为乘号,n^2为n的2次方,回答请注意步骤!
题目详情
1题:用数学归纳法证明1+4+9…+n^2=1/6*n(n+1)(2n+1)
2题:数学归纳法证明1*4+2*7+3*10+……+n(3n+1)=n(n+1)^2
注:*为乘号,n^2为n的2次方,回答请注意步骤!
2题:数学归纳法证明1*4+2*7+3*10+……+n(3n+1)=n(n+1)^2
注:*为乘号,n^2为n的2次方,回答请注意步骤!
▼优质解答
答案和解析
用数学归纳法证明1+4+9…+n^2=1/6*n(n+1)(2n+1)
证:当n=1,1=1/6*1*(1+1)(2*1+1)=1,成立
假设n=k时,等式成立,即1+4+9…+k^2=1/6*k(k+1)(2k+1)
当n=k+1时,1+4+9+...+k^2+(k+1)^2=1/6*k(k+1)(2k+1)+(k+1)^2
=1/6(k+1)(2k^2+k+6k+6)=1/6(k+1)(K+2)(2K+3)=1/6(K+1)[K+1)+1][2(K+1)+1]
所以1+4+9…+n^2=1/6*n(n+1)(2n+1)成立
证:当n=1,1=1/6*1*(1+1)(2*1+1)=1,成立
假设n=k时,等式成立,即1+4+9…+k^2=1/6*k(k+1)(2k+1)
当n=k+1时,1+4+9+...+k^2+(k+1)^2=1/6*k(k+1)(2k+1)+(k+1)^2
=1/6(k+1)(2k^2+k+6k+6)=1/6(k+1)(K+2)(2K+3)=1/6(K+1)[K+1)+1][2(K+1)+1]
所以1+4+9…+n^2=1/6*n(n+1)(2n+1)成立
看了 1题:用数学归纳法证明1+4...的网友还看了以下:
数学题 详细过程 急用(1/2)已知向量a,b的夹角为60度,且a的模长等于2,b的模长等于1, 2020-05-16 …
X+1/X=a问X^n+1/X^n=?是我们数学老师提出的:已知X+1/X=a问X^n+1/X^n 2020-06-05 …
初中数学n^2+n-420=0求n? 2020-06-14 …
已知数列{an}满足a1=5,a2=5,a(n+1)=an+6a(n-1)(n≥2)...我是答案 2020-06-27 …
问:1×2+2×3+3×4+4×5+…+n(n+1)和1×2+2×3+3×4+4×5+…+n(n+ 2020-07-02 …
.(本题6分)先阅读下面的内容,例题:若m2+2mn+2n2-6n+9=0,求m和n的值.∵m2+ 2020-07-13 …
求证:1+1/2^2+1/3^2+.+1/n^2<=5/3. 2020-07-26 …
我又问数学题来了.1.x=1-1/y,y=1-1/z,则用z表示x为?2.﹙2m/m+2-m/m- 2020-07-30 …
用数学归纳法证明:1·2·3+2·3·4+…+n(n+1)(n+2)=(n+1)·(n+2)·(n 2020-08-01 …
在数学归纳法里,裂项法是什么?请阐明基本原理,并以“问题补充”内的式题作例子证题说明1/1*2*3+ 2021-01-13 …