早教吧作业答案频道 -->数学-->
设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩阵,如何求P?设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得AP=PJ,其中J为约旦标准型矩
题目详情
设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得 AP=PJ,其中J为约旦标准型矩阵,如何求P?
设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得
AP=PJ,其中J为约旦标准型矩阵,如何求P?
如题.
约旦标准型J如图
约旦标准型不知道,求一个系统点的求P的方法
如A可以相似对角化的时候,P的列向量由A的特征向量组成,要将A相似对角化,就需要先求特征值,再求对应特征值的特征向量,则这些特征向量按列组成P,与A相似的对角矩阵的对角元就是A的特征值.

设A为n阶方阵,因此A可以化为约旦标准型,即存在可逆矩阵P,使得
AP=PJ,其中J为约旦标准型矩阵,如何求P?
如题.
约旦标准型J如图
约旦标准型不知道,求一个系统点的求P的方法
如A可以相似对角化的时候,P的列向量由A的特征向量组成,要将A相似对角化,就需要先求特征值,再求对应特征值的特征向量,则这些特征向量按列组成P,与A相似的对角矩阵的对角元就是A的特征值.

▼优质解答
答案和解析
首先必须求最小多项式.一般只要矩阵不特殊都是sI-A初等行列变换变成史密斯标准型,从而通过行列式因子或者直接算出来不变因子组,写成(x-si)^ni形式后,求初等因子组,初等因子组里相同因子方幂最大的相乘就得到了最小多项式.例如我们求得初等因子组为x(x-1),(x-1),(x-1)^2,则其最小多项式为x(x-1)(x-1)^2,最小多项式的方幂就是约当块的分块,此题分块为0,1,1(二重),写成约当标准型即可.然后通过AP=PJ把P分成x1,x2,...xn的列向量,然后一列一列的待定系数法可求得x1,x2,...,xn.
某些乘方比较好算或者阶次较小的矩阵可以用广义特征根法,优点是运算量小,可以直接求得约当标准型和变换矩阵P:det(sI-A)求得A的特征值,然后依次带回,分三种情况:si为单根则对应的约当块为1*1,对角线上是si,对应的特征向量为P中对应的列向量(如果约当型中你把这个单根的块放到第一个则对应P中第一列,放到第二个则对应第二列);如果si是n重根,但是可以求得n个特征向量(即sI-A在s=si的时候可以相似对角化),则得到一个n阶块,对角线上是si,这n个特征向量是P对应的列;如果si是n重根,但是只能求得m1(m1
某些乘方比较好算或者阶次较小的矩阵可以用广义特征根法,优点是运算量小,可以直接求得约当标准型和变换矩阵P:det(sI-A)求得A的特征值,然后依次带回,分三种情况:si为单根则对应的约当块为1*1,对角线上是si,对应的特征向量为P中对应的列向量(如果约当型中你把这个单根的块放到第一个则对应P中第一列,放到第二个则对应第二列);如果si是n重根,但是可以求得n个特征向量(即sI-A在s=si的时候可以相似对角化),则得到一个n阶块,对角线上是si,这n个特征向量是P对应的列;如果si是n重根,但是只能求得m1(m1
看了 设A为n阶方阵,因此A可以化...的网友还看了以下:
设A、B为n阶方阵,下列讨论中不正确的是()A.若A可逆且AB=0,则B=0;B.若A、B中有一个 2020-05-14 …
关于化学中可逆反应的一个小问题假设一个可逆反应达到平衡,如果增加反应物的浓度,会使反应朝正方向进行 2020-05-20 …
关于相似对角化,标准型,规范型的问题1.用可逆矩阵P把A相似对角化,那么得到的对角阵的元素都是A的特 2020-12-01 …
如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中 2020-12-21 …
如图:已知A、B是线段MN上的两点,MN=6,MA=2,AB>2,以A为中心顺时针旋转点M,以B为中 2020-12-21 …
如图,已知A,B是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以B为 2020-12-21 …
如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1,以A为中心顺时针旋转点M,以B为中 2020-12-21 …
如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1,以A为中心顺时针旋转点M,以B为中 2020-12-21 …
已知A、B是线段MN上的两点,MN=4,MA=1,MB>1,以A为中心顺时针旋转点M,以B为中心逆时 2020-12-21 …
如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中 2020-12-21 …