早教吧作业答案频道 -->数学-->
圆规谁发明的?谁能将一下圆规的发明故事.
题目详情
▼优质解答
答案和解析
我国古代数学家对圆周率方面的研究工作,成绩是突出的.早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年.
祖冲之是和他儿子一起从事这项研究工作的,当时条件很差.他们在一间大屋的地上画了一个直径1丈的大圆.从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样.接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的.祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位.其近似分数是 355/113,被称为"密率".德国数学家奥托在1573年重新得出这个近似分数.当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了.后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率".日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对.
祖冲之是和他儿子一起从事这项研究工作的,当时条件很差.他们在一间大屋的地上画了一个直径1丈的大圆.从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样.接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的.祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位.其近似分数是 355/113,被称为"密率".德国数学家奥托在1573年重新得出这个近似分数.当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了.后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率".日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对.
看了圆规谁发明的?谁能将一下圆规的...的网友还看了以下:
几道数学圆锥的题(1)一个圆柱与圆锥的底面半径相等,圆锥的高是圆柱的3倍这个圆锥的体积是?(2)一 2020-04-27 …
用一个平面去截正方体、长方体、棱柱、圆柱、圆锥、球,既能够截出长方形又能截出圆的是既能够截出三角形 2020-05-14 …
如图,以O为圆心的两个同心圆中,大圆的直径AD交小圆于M.N如图,以O为圆心的两个同心圆中,大圆的 2020-05-22 …
如图所示,OA是圆O的半径,以OA为直径的圆C与圆O的玄AB相交于点D.1.说明线段BD与AD的大 2020-07-02 …
已知点P(-2,-3)和以Q为圆心的圆(x-4)^2+(y-2)^2=91.求过P点的圆Q的直切线 2020-07-26 …
有一大圆,右边有两相同小圆,小圆于小圆相切,且两小圆于大圆相切(都不是内切)然后做矩形把三个圆框. 2020-07-29 …
求一符合条件小圆上的点的轨迹已知有一大圆和小圆,小圆在大圆的内部沿圆周做内切运动.求小圆上的任一点 2020-07-29 …
、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部, 2020-07-29 …
1.用圆规画圆,圆规两脚间的距离是圆的()2.在同圆或等圆中,圆的直径都是半径的()倍3.判断题1. 2020-12-01 …
已知动圆P与圆C1:(x+5)2+y2=49和圆C2:(x-5)2+y2=1,分别求满足下列条件的动 2021-01-11 …