早教吧作业答案频道 -->数学-->
一个四边形中存在一组对边的平方和等于另一组对边的平方和,则称这个四边形为等平方和四边形梯形ABCD中,AD‖BC,AC⊥BD,垂足为O,则四边形ABCD是等平方和四边形.若将△AOD绕点O逆时针方向旋转
题目详情
▼优质解答
答案和解析
四边形ABCD能成为等平方和四边形,理由:
连AC,BD,交于E
在△AOD和△COB中,
∠ADO=∠OBC,
∠DAO=∠OCB,
∴△AOD∽△COB,
∴AO/CO=DO/BO,
∵∠AOC=∠DOB=90+∠AOB,
∴△AOC∽△DOB,
∴∠OAC=∠ODB,
∵直角三角形AOD中,∠OAD+∠ODA=∠OAD+∠ADB+∠BDO=90
∴三角形AED中,∠EAD+∠EDA=∠EAO+∠OAD+∠ADB=∠BDO+∠OAD+∠ADB=90
∴∠AED=90°,
利用勾股定理有,
AD^2=AE^2+DE^2,BC^2=BE^2+CE^2,
AB^2=AE^2+BE^2,CD^2=CE^2+DE^2,
∴AD^2+BC^2=AB^2+CD^2,
所以这个四边形为等平方和四边形
连AC,BD,交于E
在△AOD和△COB中,
∠ADO=∠OBC,
∠DAO=∠OCB,
∴△AOD∽△COB,
∴AO/CO=DO/BO,
∵∠AOC=∠DOB=90+∠AOB,
∴△AOC∽△DOB,
∴∠OAC=∠ODB,
∵直角三角形AOD中,∠OAD+∠ODA=∠OAD+∠ADB+∠BDO=90
∴三角形AED中,∠EAD+∠EDA=∠EAO+∠OAD+∠ADB=∠BDO+∠OAD+∠ADB=90
∴∠AED=90°,
利用勾股定理有,
AD^2=AE^2+DE^2,BC^2=BE^2+CE^2,
AB^2=AE^2+BE^2,CD^2=CE^2+DE^2,
∴AD^2+BC^2=AB^2+CD^2,
所以这个四边形为等平方和四边形
看了一个四边形中存在一组对边的平方...的网友还看了以下:
如图,已知等边△OAB的边长为1,以AB边上的高OA1为边,按逆时针方向作等边△OA1B1,A1B1 2020-03-31 …
设A为n阶方阵,且A^2=0,则下列选项中错误的是A.A可逆B.A+E可逆C.设A为n阶方阵,且A 2020-05-14 …
设A为n阶方阵,且A^2=0,则下列选项中错误的是A.A可逆B.A+E可逆C.设A为n阶方阵,且A 2020-05-14 …
高等代数题,我算得A+E必可逆,没有因果关系设矩阵A满足A^3=E,则有().A,若A-E可逆,则 2020-06-10 …
下列命题原命题与逆命题都是真命题的是()A菱形的对角线互相垂直B正方形的四边都相等C连接矩形四条边 2020-07-09 …
如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿 2020-07-17 …
A是n阶方阵,且满足A^2=E,则下列结论正确的是()A:若A不等于E,则A+E不可逆B:若A不等于 2020-11-02 …
A.B是两个n阶方阵,则A,若A、B都可逆则A+B也可逆B.若AB可逆,则2A.B都可逆C若A+B可 2020-11-03 …
用两个全等的正方形ABCD和CDEF拼成一个矩形ABEF,把一个足够大的直角三角形的直角顶点与这个矩 2020-11-07 …
下列结论正确的是().A.初等方阵的逆是其自身B.初等方阵的逆是同类初等方阵C.初等方阵的乘积仍是初 2020-12-21 …