早教吧作业答案频道 -->物理-->
小物块A的质量为m,物块与坡道间的动摩擦因数为μ,水平面光滑;坡道顶端距水平面高度为h,倾角为θ;物块从坡道进入水平滑道时,在底端O点处无机械能损失,重力加速度为g.将轻弹簧
题目详情
小物块A的质量为m,物块与坡道间的动摩擦因数为μ,水平面光滑;坡道顶端距水平面高度为h,倾角为θ;物块从坡道进入水平滑道时,在底端O点处无机械能损失,重力加速度为g.将轻弹簧的一端连接在水平滑道M处并固定墙上,另一自由端恰位于坡道的底端O点,如图所示.物块A从坡顶由静止滑下,求:

(1)物块滑到O点时的速度大小.
(2)弹簧为最大压缩量d时的弹性势能.
(3)物块A被弹回到坡道上升的最大高度.


(1)物块滑到O点时的速度大小.
(2)弹簧为最大压缩量d时的弹性势能.
(3)物块A被弹回到坡道上升的最大高度.

▼优质解答
答案和解析
(1)由动能定理得
mgh-μmgcosθ•
=
mv2
解得:v=
(2)在水平道上,机械能守恒定律得
mv2=Ep
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
=0-
mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. μmgcosθ•
h h hsinθ sinθ sinθ=
mv2
解得:v=
(2)在水平道上,机械能守恒定律得
mv2=Ep
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
=0-
mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
.
1 1 12 2 2mv2
解得:v=
(2)在水平道上,机械能守恒定律得
mv2=Ep
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
=0-
mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. 2
解得:v=
(2)在水平道上,机械能守恒定律得
mv2=Ep
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
=0-
mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. v=
2gh(1−μcotθ) 2gh(1−μcotθ) 2gh(1−μcotθ)
(2)在水平道上,机械能守恒定律得
mv2=Ep
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
=0-
mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
.
1 1 12 2 2mv2=Ep
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
=0-
mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. 2=Ep
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
=0-
mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. p
则代入解得Epp=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h11,
物体被弹回过程中由动能定理得
-mgh11-μmgcosθ•
=0-
mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. μmgcosθ•
h1 h1 h11sinθ sinθ sinθ=0-
mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
.
1 1 12 2 2mv2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. 2
解得:h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. h1=
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. 1=
(1−μcotθ)h (1−μcotθ)h (1−μcotθ)h1+μcotθ 1+μcotθ 1+μcotθ
答:(1)物块滑到O点时的速度大小为v=
.
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. v=
2gh(1−μcotθ) 2gh(1−μcotθ) 2gh(1−μcotθ).
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
. h1=
. 1=
(1−μcotθ)h (1−μcotθ)h (1−μcotθ)h1+μcotθ 1+μcotθ 1+μcotθ.
mgh-μmgcosθ•
h |
sinθ |
1 |
2 |
解得:v=
2gh(1−μcotθ) |
(2)在水平道上,机械能守恒定律得
1 |
2 |
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
h1 |
sinθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
h |
sinθ |
1 |
2 |
解得:v=
2gh(1−μcotθ) |
(2)在水平道上,机械能守恒定律得
1 |
2 |
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
h1 |
sinθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
1 |
2 |
解得:v=
2gh(1−μcotθ) |
(2)在水平道上,机械能守恒定律得
1 |
2 |
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
h1 |
sinθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
解得:v=
2gh(1−μcotθ) |
(2)在水平道上,机械能守恒定律得
1 |
2 |
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
h1 |
sinθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
2gh(1−μcotθ) |
(2)在水平道上,机械能守恒定律得
1 |
2 |
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
h1 |
sinθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
1 |
2 |
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
h1 |
sinθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
则代入解得Ep=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h1,
物体被弹回过程中由动能定理得
-mgh1-μmgcosθ•
h1 |
sinθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
则代入解得Epp=mgh-μmghcotθ
(3)设物体A能够上升得最大高度h11,
物体被弹回过程中由动能定理得
-mgh11-μmgcosθ•
h1 |
sinθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
h1 |
sinθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
1 |
2 |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
解得:h1=
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
(1−μcotθ)h |
1+μcotθ |
答:(1)物块滑到O点时的速度大小为v=
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
2gh(1−μcotθ) |
(2)弹簧为最大压缩量d时的弹性势能为mgh-μmghcotθ.
(3)物块A被弹回到坡道上升的最大高度为h1=
(1−μcotθ)h |
1+μcotθ |
(1−μcotθ)h |
1+μcotθ |
(1−μcotθ)h |
1+μcotθ |
看了小物块A的质量为m,物块与坡道...的网友还看了以下:
分解因式a的平方(x-2a)的平方+a(2a-x)的三次方分解因式(m的平方+3m)的平方-8(m 2020-06-06 …
解公因式1.(-y分之a的平方x)的立方除以(ay分之x)的平方(xy分之负a)的四次方2.(x+ 2020-06-06 …
有几道力学题,帮忙做下了.理论力学(专)第二题单选题(公理和受力分析)1三力平衡定理是.A.共面不 2020-06-12 …
小华通过实验探究杠杆平衡时动力和动力臂的关系.实验过程中,保持阻力、阻力臂不变,在杠杆水平平衡时, 2020-07-04 …
“a的平方+b的平方”=0,则a.b全为零的逆否命题是“若a.b全不为0,则a的平方+b的平“a的 2020-07-09 …
油压机上面的100公斤力/平方厘米是表示压力还是压强?每平方厘米的空间的压力有N公斤,是表示液体/ 2020-07-20 …
如图所示,矩形线圈abcd在匀强磁场中绕OO′轴匀速旋转,产生感应电动势最小的位置是()A.线圈平 2020-07-28 …
下列说法中正确的是()A.力的合成遵循平行四边形定则B.一切矢量的合成都遵循平行四边形定则C.以两 2020-07-30 …
1)12a的4次方-3a(a的平方-4a(a的平方-2a的平方+3a))=?2)3(x的平方-2)- 2020-10-30 …
理论力学几个问题第二题1三力平衡定理是.A.共面不平行的三个力相互平衡必汇交于一点;B.共面三力若平 2020-11-04 …