早教吧作业答案频道 -->其他-->
已知数列{an}是等比数列,首项a1=1,公比q>0,其前n项和为Sn,且S1+a1,S3+a3,S2+a2成等差数列,求{an}通项公式若bn满足an+1=(1/2)的anbn次方,Tn为bn前n项和,若Tn大于等于m恒成立,求m最大值
题目详情
已知数列{an}是等比数列,首项a1=1,公比q>0,其前n项和为Sn,且S1+a1,S3+a3,S2+a2成等差数列,求{an}通项公式
若bn满足an+1=(1/2)的anbn次方,Tn为bn前n项和,若Tn大于等于m恒成立,求m最大值
若bn满足an+1=(1/2)的anbn次方,Tn为bn前n项和,若Tn大于等于m恒成立,求m最大值
▼优质解答
答案和解析
2(S3+a3)=S1+a1+S2+a2
a3=1/4 a2=1/2 q=1/2
an=a1q^(n-1)=1/2^(n-1)
a(n+1)=(1/2)^anbn
anbn=log(1/2)a(n+1)=n
bn=n*2^(n-1)
tn=1*2^0+2*1^1+3*2^2+.....+n*2^(n-1)
2tn= 1*2^1+2*2^2+.....+(n-1)*2^(n-1)+n2^n
上式相加得
tn-2tn=-tn=1+2^1+2^2+.....+2^(n-1)-n2^n=2^n-1-n2^n
tn=(n-1)2^n+1>=1
m最大值1
a3=1/4 a2=1/2 q=1/2
an=a1q^(n-1)=1/2^(n-1)
a(n+1)=(1/2)^anbn
anbn=log(1/2)a(n+1)=n
bn=n*2^(n-1)
tn=1*2^0+2*1^1+3*2^2+.....+n*2^(n-1)
2tn= 1*2^1+2*2^2+.....+(n-1)*2^(n-1)+n2^n
上式相加得
tn-2tn=-tn=1+2^1+2^2+.....+2^(n-1)-n2^n=2^n-1-n2^n
tn=(n-1)2^n+1>=1
m最大值1
看了 已知数列{an}是等比数列,...的网友还看了以下:
1.如果n阶行列式中负项的个数为偶数,则n>= 2.如果n阶行列式中等于零的元素个数大于n^2-n 2020-05-16 …
数列{an}的前n项和Sn=-n²;,数列{bn}满足b1=2,bn+1=3bn-t(n-1),已 2020-05-16 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
数列题,快,在线等,谢谢数列{an}的前n项和Sn=-n²,数列{bn}满足b1=2,bn+1=3 2020-07-20 …
1.设f(x)=(x^n-x^(-n))/(x^n+x^(-n)),n为正整数,试比较f(根号2) 2020-08-01 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
设数列an满足a1=2,a(m+n)+a(m-n)-m+n=1/2(a2m+a2n)..设数列an满 2020-10-31 …
求:φ(n)=(1/3)n的所有正整数n.补充:φ(n)是欧拉函数:欧拉函数是数论中很重要的一个函数 2020-11-06 …
1.M={x|x=2n+1,n∈Z},N={y=4n±1,n∈Z}求证M=N怎么证M包含于N关于N包 2020-12-02 …
定义一种对正数n的“F”运算:一、当n为奇数时结果为3n+5;二、当n为偶数时,结果为n/2^k(其 2020-12-05 …