早教吧作业答案频道 -->数学-->
已知椭圆(x^2)/2+(y^2)/4=1两焦点分别为F1、F2,P是椭圆在第一象限的图像上的一点,并满足向量PF1·PF2=1(向量的数量积是1),过P做倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.第一问求P点
题目详情
已知椭圆(x^2)/2+(y^2)/4=1两焦点分别为F1、F2,P是椭圆在第一象限的图像上的一点,并满足向量PF1·PF2=1(向量的数量积是1),过P做倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
第一问求P点坐标,我会,是(1,根2).
第二问要求△PAB面积的最大值.一看答案我就懵了,答案上来就是设AB的方程为:y =根2·x + m,我不明白为什么AB斜率为根2啊~
还有一道关于圆锥曲线轨迹的题,题目我就不赘述了,因为其他方面都明白,只有一点疑问,就是——△AOB中,OC是内角平分线交AB于C,那么AC/CB=AO/OB?有这个关系吗,我够快高三了怎么这个都不知道呢~
第一问求P点坐标,我会,是(1,根2).
第二问要求△PAB面积的最大值.一看答案我就懵了,答案上来就是设AB的方程为:y =根2·x + m,我不明白为什么AB斜率为根2啊~
还有一道关于圆锥曲线轨迹的题,题目我就不赘述了,因为其他方面都明白,只有一点疑问,就是——△AOB中,OC是内角平分线交AB于C,那么AC/CB=AO/OB?有这个关系吗,我够快高三了怎么这个都不知道呢~
▼优质解答
答案和解析
设PB的斜率为 K(K>0)
则BP的直线方程为y-√2K=(x-1).
方程组: y-√2=K(x-1)(1)
x²/2+y²/4=1(2)
由(1)(2)得:(2+k²)x²+2k(√2-k)x+(√2-k)²-4=0
设B(xb,yb)则1+xb=2k(k-√2)/2+k²,
xb={2k(k-√2)/2+k²}-1=k²-2√2k-2/2+k²
同理可得:xa=k²+2√2k-2/2+k²
则:xa-xb=4√2k/2+k²,
ya-yb=-k(xa-1)-k(xb-a)=8k/2+k²
所以:AB的斜率KAB=yA-yB/xA-xB=√2为定值.
第二个
M为BC边中点
过C作CN平行于AB交AM的延长线于N
三角形ABM相似三角形NCM,
AB/NC=BM/CM,
又可证明∠CAN=∠ANC
所以AC=CN,
所以AB/AC=MB/MC
则BP的直线方程为y-√2K=(x-1).
方程组: y-√2=K(x-1)(1)
x²/2+y²/4=1(2)
由(1)(2)得:(2+k²)x²+2k(√2-k)x+(√2-k)²-4=0
设B(xb,yb)则1+xb=2k(k-√2)/2+k²,
xb={2k(k-√2)/2+k²}-1=k²-2√2k-2/2+k²
同理可得:xa=k²+2√2k-2/2+k²
则:xa-xb=4√2k/2+k²,
ya-yb=-k(xa-1)-k(xb-a)=8k/2+k²
所以:AB的斜率KAB=yA-yB/xA-xB=√2为定值.
第二个
M为BC边中点
过C作CN平行于AB交AM的延长线于N
三角形ABM相似三角形NCM,
AB/NC=BM/CM,
又可证明∠CAN=∠ANC
所以AC=CN,
所以AB/AC=MB/MC
看了 已知椭圆(x^2)/2+(y...的网友还看了以下:
若存在正整数p、q、r(p<q<r),使得非常数等差数列{an}中,第p、q、r项成等比数列,第2 2020-05-13 …
已知公差不为零的等差数列的第k,n,p项依次构成等比数列的连续三项,则等比数列的公比是?解: 公差 2020-05-13 …
对于定义在GF(p)上的椭圆曲线,取素数P=11,椭圆曲线y2=x3+x+6mod11,则以下是椭圆 2020-05-26 …
第一数学归纳法证明:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6的问题我在 2020-06-11 …
数学—圆锥曲线—椭圆P是椭圆与Y轴正半轴的交点,等边三角形PF1F2的面积为根号3求符合题意的椭圆 2020-06-27 …
1.设数列{an}的各项依次是1,2,2,3,3,3,4,4,4,4,.(1个1,2个2,k个k) 2020-07-22 …
点P是椭圆x^2/25+y^2/16=1上一点,F1F2是椭圆的两个焦点且且三角形PFF的内切圆半 2020-07-31 …
反比例函数的题目,着重解析第三问.急第三问.如图,直线l经过点A(1,0),且与双曲线y=m/x(x 2020-12-18 …
(1)质数性质:若质数p︴a•b,则必有p︴a或p︴b(注:p︴a表示p是a的约数)这个怎么理解?若 2021-02-05 …
已知椭圆P的焦点坐标为(0,正负1),长轴等于焦距的2倍,(1)求椭圆P的方程(2)矩形ABCD的边 2021-02-17 …