早教吧作业答案频道 -->数学-->
关于向量的三道题1 已知向量集合M={a│a=(1,2)+λ(3,4),λ∈R},N={a│a=(-2,-2)+λ(4,5),λ∈R},求M∩N2 已知:AD、BE、CF是△ABC的三条高,交于O点,DG⊥BE于G,DH⊥CF于H,求证:HG‖EF3 两个力F1=i+j,F2=4i-5j作
题目详情
关于向量的三道题
1 已知向量集合M={a│a=(1,2)+λ(3,4),λ∈R},N={a│a=(-2,-2)+λ(4,5),λ∈R},求M∩N
2 已知:AD、BE、CF是△ABC的三条高,交于O点,DG⊥BE于G,DH⊥CF于H,求证:HG‖EF
3 两个力F1=i+j,F2=4i-5j作用于同一质点,使该质点从A(20,15)移动到点B(7,0),其中i,j是x轴,y轴正方向上的单位向量 求F1,F2分别对该质点做的功
1 已知向量集合M={a│a=(1,2)+λ(3,4),λ∈R},N={a│a=(-2,-2)+λ(4,5),λ∈R},求M∩N
2 已知:AD、BE、CF是△ABC的三条高,交于O点,DG⊥BE于G,DH⊥CF于H,求证:HG‖EF
3 两个力F1=i+j,F2=4i-5j作用于同一质点,使该质点从A(20,15)移动到点B(7,0),其中i,j是x轴,y轴正方向上的单位向量 求F1,F2分别对该质点做的功
▼优质解答
答案和解析
1
设M中的λ为λ1,N中的λ为λ2,则有:
若使M和N中的元素有相同,则:
对于向量的第一个元素,有:
1+3·λ1=-2+4·λ2→3·λ1-4·λ2=-3;①
对于向量的第二个元素,有:
2+4·λ1=-2+5·λ2→4·λ1-5·λ2=-4.②
解由①②组成的方程组得:
λ1=-1; λ2=0;
于是,此时a=(1,2)+λ1·(3,4)=(-2,-2)+λ2·(4,5)=(-2,-2).
即M∩N={(-2,-2)}
2
证明:
因为DG⊥BE,DH⊥CF
所以O、G、D、H四点共圆
所以∠OHG=∠ODG
同理B、C、E、F四点共圆
所以∠CFE=∠CBE
因为∠ODG+∠BDG=90,∠DBE+∠BDG=90
所以∠CBE=∠ODG
所以∠OHG=∠CFE
所以HG//EF
3
F1、F2分别可以写作(1,1),(4,-5)
该点从A(20,15)移到B(7,0),其横向位移为7-25=-18,
纵向位移为0-15=-15
故F1在x轴方向上对其做的功为1*(-18)=-18;
在y轴方向上对其做的功为1*(-15)=-15,
故F1对其做的功为(-18)+(-15)=-33
F2在x轴方向上对其做的功为4*(-18)=-72,
在y轴方向上对其做的功为-5*(-15)=75,
故F2对其做的功为75-72=3
设M中的λ为λ1,N中的λ为λ2,则有:
若使M和N中的元素有相同,则:
对于向量的第一个元素,有:
1+3·λ1=-2+4·λ2→3·λ1-4·λ2=-3;①
对于向量的第二个元素,有:
2+4·λ1=-2+5·λ2→4·λ1-5·λ2=-4.②
解由①②组成的方程组得:
λ1=-1; λ2=0;
于是,此时a=(1,2)+λ1·(3,4)=(-2,-2)+λ2·(4,5)=(-2,-2).
即M∩N={(-2,-2)}
2
证明:
因为DG⊥BE,DH⊥CF
所以O、G、D、H四点共圆
所以∠OHG=∠ODG
同理B、C、E、F四点共圆
所以∠CFE=∠CBE
因为∠ODG+∠BDG=90,∠DBE+∠BDG=90
所以∠CBE=∠ODG
所以∠OHG=∠CFE
所以HG//EF
3
F1、F2分别可以写作(1,1),(4,-5)
该点从A(20,15)移到B(7,0),其横向位移为7-25=-18,
纵向位移为0-15=-15
故F1在x轴方向上对其做的功为1*(-18)=-18;
在y轴方向上对其做的功为1*(-15)=-15,
故F1对其做的功为(-18)+(-15)=-33
F2在x轴方向上对其做的功为4*(-18)=-72,
在y轴方向上对其做的功为-5*(-15)=75,
故F2对其做的功为75-72=3
看了 关于向量的三道题1 已知向量...的网友还看了以下:
如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥A于F, 2020-04-26 …
已知:如图,四边形ABCD是菱形,∠A=60°,直线EF经过点C,分别交AB、AD的延长线于E、F 2020-05-16 …
请教catalan数网上对catalan数的通项有两种说法一种说catalan数满足递归式:h(n 2020-06-28 …
已知,如图,AB是⊙O的直径,AD是弦,C是弧AB的中点,连接BC并延长与AD的延长线相交于点P, 2020-07-15 …
已知,如图,AB是⊙O的直径,AD是弦,C是弧AB的中点,连接BC并延长与AD的延长线相交于点P, 2020-07-15 …
已知锐角三角形ABC内接于O,AD⊥BC.垂足为D.(1)如图1,若AB=BC,BD=DC,求∠B 2020-07-19 …
如图,已知△ABC中,∠ABC=45度,AD是BC边上的高,E为AC上的一点,BE交AD于F.且B 2020-07-26 …
f(x)=sinx,求f(1+h),[f(1+h)-f(1)]/h根据和差化积公式:sinα-si 2020-08-02 …
用括号单词适当形式填空:It(be)agreencaterpillar.Nowit(be)abrow 2020-12-03 …
⊿ABC的三个顶点都在⊙O上,AD,BE是高,交点为H,BE的延长线交⊙O于F,下列结论:⊿ABC的 2020-12-23 …