早教吧作业答案频道 -->数学-->
两道关于圆的暴难题!强者进!1、设圆满足:①截y轴所得弦长为2;②被x轴分成两段弧,其弧长之比为3:1;③圆心到直线l:x-2y=0的距离为√5/5,求该圆的方程.2、已知过A(0,1)和B(4,a)且与x轴
题目详情
两道关于圆的暴难题!强者进!
1、设圆满足:①截y轴所得弦长为2;②被x轴分成两段弧,其弧长之比为3:1;③圆心到直线l:x-2y=0的距离为√5/5,求该圆的方程.
2、已知过A(0,1)和B(4,a)且与x轴相切的圆只有一个,求a的值及圆的方程.
1、设圆满足:①截y轴所得弦长为2;②被x轴分成两段弧,其弧长之比为3:1;③圆心到直线l:x-2y=0的距离为√5/5,求该圆的方程.
2、已知过A(0,1)和B(4,a)且与x轴相切的圆只有一个,求a的值及圆的方程.
▼优质解答
答案和解析
第二题:
与x轴相切的圆,圆心的y坐标的绝对值为圆的半径.
所以,可设圆的方程为,
(x - c)^2 + (y - d)^2 = d^2,
(x - c)^2 + y^2 - 2dy = 0,
又,a(0,1)和b(4,a)在圆上,
所以,
(0-c)^2 + 1 - 2d = 0, c^2 + 1 = 2d, d = (c^2 + 1)/2. ...(1)
(4-c)^2 + a^2 - 2da = 0, ...(2)
将(1)带入(2),有,
(4-c)^2 + a^2 - a(c^2 + 1) = 0,
c^2 - 4c + 4 + a^2 - ac^2 - a = 0,
(1-a)c^2 - 4c + 4 + a^2 - a = 0 ...(3)
因满足条件的圆只有一个,所以关于c的2次方程(3)应该有2个相同的根.
因此,(-4)^2 - 4(1-a)[4 + a^2 - a] = 0,
4 - (1-a)[4 + a^2 -a] = 0,
4 - [4 + a^2 - a - 4a - a^3 + a^2] = 0,
a^3 - 2a^2 + 5a = 0,
a[a^2 - 2a + 5] = 0,
a[(a-1)^2 + 4] = 0.
所以,a = 0,
这时,(3)式化为,
(1-0)c^2 - 4c + 4 + 0 - 0 = 0,
c^2 - 4c + 4 = 0,
(c - 2)^2 = 0,
c = 2.
再由(1)式,
d = (2^2 + 1)/2 = 5/2.
因此,
圆的方程为,
(x - 2)^2 + (y - 5/2)^2 = (5/2)^2 = 9/4
与x轴相切的圆,圆心的y坐标的绝对值为圆的半径.
所以,可设圆的方程为,
(x - c)^2 + (y - d)^2 = d^2,
(x - c)^2 + y^2 - 2dy = 0,
又,a(0,1)和b(4,a)在圆上,
所以,
(0-c)^2 + 1 - 2d = 0, c^2 + 1 = 2d, d = (c^2 + 1)/2. ...(1)
(4-c)^2 + a^2 - 2da = 0, ...(2)
将(1)带入(2),有,
(4-c)^2 + a^2 - a(c^2 + 1) = 0,
c^2 - 4c + 4 + a^2 - ac^2 - a = 0,
(1-a)c^2 - 4c + 4 + a^2 - a = 0 ...(3)
因满足条件的圆只有一个,所以关于c的2次方程(3)应该有2个相同的根.
因此,(-4)^2 - 4(1-a)[4 + a^2 - a] = 0,
4 - (1-a)[4 + a^2 -a] = 0,
4 - [4 + a^2 - a - 4a - a^3 + a^2] = 0,
a^3 - 2a^2 + 5a = 0,
a[a^2 - 2a + 5] = 0,
a[(a-1)^2 + 4] = 0.
所以,a = 0,
这时,(3)式化为,
(1-0)c^2 - 4c + 4 + 0 - 0 = 0,
c^2 - 4c + 4 = 0,
(c - 2)^2 = 0,
c = 2.
再由(1)式,
d = (2^2 + 1)/2 = 5/2.
因此,
圆的方程为,
(x - 2)^2 + (y - 5/2)^2 = (5/2)^2 = 9/4
看了 两道关于圆的暴难题!强者进!...的网友还看了以下:
已知等腰梯形的两底边分别为MN.过梯形的对角线的交点,引平行于底边的直线被两腰所截的线段长为AMN 2020-04-25 …
正方体体对角线截面形状沿体对角线用直线(与顶面平行)截正方体为两部分问截面形状是?如果说关于体对角 2020-05-13 …
一根报废电阻丝通电后,等可能的在任意一个地方熔断为两截,则长短两截长度之比不小于2的概率 2020-05-21 …
一根圆柱形木材,从距中点4分米处截断后,表面积增加了10平方分米,已知较短的一截是较长一截的百分之 2020-05-23 …
试证抛物线x^1/2+y^1/2=a^1/2上任意一点的切线与两坐标轴相截的截距之和等于a 2020-06-18 …
两直线被第三条直线所截,如果两个角在两条被截直线之间(内),且在截线的两侧,我们称这两个角是()如 2020-06-20 …
一条绳子,先截去它的七分之四,再截去七分之四米,比较两次哪次截的长 2020-07-07 …
如图所示,BF、DE相交于点A,BG交BF于点B,交AC于点C.(1)指出ED、BC被BF所截的同 2020-07-23 …
如图所示,BF、DE相交于点A,BG交BF于点B,交AC于点C.(1)指出ED、BC被BF所截的同 2020-07-23 …
已知角1和角2是两条直线被第三条直线所截的同旁内角,如果二分之一角1加二分之一角2等于,这两条直线 2020-07-29 …