早教吧作业答案频道 -->数学-->
如图,在正方形ABCD中,AD=12,点E在CD上,DE=4,AE的垂直平分线EP分别交AD,AE,BC于点F,H,G,交AB的延长线于点于点P,求FH:HG的值.
题目详情
如图,在正方形ABCD中,AD=12,点E在CD上,DE=4,AE的垂直平分线EP分别交AD,AE,BC于点F,H,G,交AB的延长线于点于点P,求FH:HG的值.
▼优质解答
答案和解析
DE=m时
通过构建相似三角形来求解,过点H作MN∥AB,分别交AD,BC于M,N两点.那么MH就是三角形ADE的中位线,MH= 1/2m,那么HN=12- 1/2m,只要证出两三角形相似,就可表示出FH:HG的值,已知了一组对顶角,一组直角,那么两三角形就相似,FH:HG=MH:NH,也就能得到所求的值.
------------
过点H作MN∥AB,分别交AD,BC于M,N两点,
∵FP是线段AE的垂直平分线,
∴AH=EH,
∵MH∥DE,
∴Rt△AHM∽Rt△AED,
∴ AM/MD= AH/HE=1,
∴AM=MD,即点M是AD的中点,
∴AM=MD=6,
∴MH是△ADE的中位线,MH= 1/2DE= 1/2m,
∵四边形ABCD是正方形,
∴四边形ABNM是矩形,
∵MN=AD=12,
∴HN=MN-MH=12- 1/2m,
∵AD∥BC,
∴Rt△FMH∽Rt△GNH,
∴ FH/GH=MH/NH=(1/2m)/(12-1/2m),
即 FHHG=m/(24-m)(0<m<12);
通过构建相似三角形来求解,过点H作MN∥AB,分别交AD,BC于M,N两点.那么MH就是三角形ADE的中位线,MH= 1/2m,那么HN=12- 1/2m,只要证出两三角形相似,就可表示出FH:HG的值,已知了一组对顶角,一组直角,那么两三角形就相似,FH:HG=MH:NH,也就能得到所求的值.
------------
过点H作MN∥AB,分别交AD,BC于M,N两点,
∵FP是线段AE的垂直平分线,
∴AH=EH,
∵MH∥DE,
∴Rt△AHM∽Rt△AED,
∴ AM/MD= AH/HE=1,
∴AM=MD,即点M是AD的中点,
∴AM=MD=6,
∴MH是△ADE的中位线,MH= 1/2DE= 1/2m,
∵四边形ABCD是正方形,
∴四边形ABNM是矩形,
∵MN=AD=12,
∴HN=MN-MH=12- 1/2m,
∵AD∥BC,
∴Rt△FMH∽Rt△GNH,
∴ FH/GH=MH/NH=(1/2m)/(12-1/2m),
即 FHHG=m/(24-m)(0<m<12);
看了 如图,在正方形ABCD中,A...的网友还看了以下:
已知三角形的面积为2.5,一条边为a,这条边上的高为h.反比例关系为h=2.5/a,图像在第一象限 2020-05-13 …
如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外 2020-05-16 …
过点P(3.2)的双曲线H:x2/a2-y2/b2=1(2表示平方)的左焦点为f(-c,0),斜率 2020-05-23 …
如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外 2020-07-05 …
如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外 2020-07-05 …
如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面 2020-07-05 …
如七,2条直线相交有2对对顶角;3条直线两两相交有o对对顶角;9条直线两两相交有12对对顶角…照此 2020-08-01 …
如图,2条直线相交有2对对顶角;3条直线两两相交有6对对顶角;4条直线两两相交有12对对顶角…照此 2020-08-01 …
桶腹直径与桶高有啥区别?D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12(母线是圆弧形 2020-10-31 …
如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外面 2020-12-10 …