早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知直四棱柱ABCD—A1B1C1D1的底面是棱形,F为棱BB1的中点,M为AC1的中点(1)求证:直线MF‖平面ABCD(2)求证:平面AFC1⊥平面ACC1A1

题目详情
已知直四棱柱ABCD—A1B1C1D1的底面是棱形,F为棱BB1的中点,M为AC1的中点
(1)求证:直线MF‖平面ABCD(2)求证:平面AFC1⊥平面ACC1A1
▼优质解答
答案和解析
证明:连接b c1取中点n 连接mn 则mn//ab 连接fn在三角形bb1c1中fn//b1c1则fn//bc ==》
三角形mnf//abcd ==》mf//abcd
2)证明:由1)证得mf//abcd 所以mf垂直于cc1 ,连接ac取其中点k ak//且等于0.5cc1//且等于mf 所以mf//bk 又因为abcd是菱形 所以bk垂直于ac 就是mf垂直于ac 所以mf垂直于aa1cc1 就是
平面AFC1⊥平面ACC1A1
看了 已知直四棱柱ABCD—A1B...的网友还看了以下: