早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:平面PQC⊥平面DCQ;(2)求二面角Q-BP-C的余弦值.

题目详情
如图四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:平面PQC⊥平面DCQ;(2)求二面角Q-BP-C的余弦值.
▼优质解答
答案和解析
过点Q作QH⊥PD于点H,又因为PD∥QA,2QA=2AB=PD,所以PD=PH=QH,所以DQ⊥PQ,所以PQ⊥平面CDQ,所以平面PQC⊥平面DCQ\x0d(2)以D为原点,DA、DP、DC为x、y、z轴建立空间直角坐标系.设AQ=a,则C(0,0,a),P(0,2a,0),Q(a,a,0),B(a,0,a).解得平面BPQ与平面CPQ的法向量为(1,1,1)、(1,1,-2).所以二面角Q-BP-C的余弦值为0
看了 如图四边形ABCD为正方形,...的网友还看了以下: