早教吧作业答案频道 -->数学-->
已知点P为正方形ABCD外一点,PD⊥平面ABCD,PD=DC,E为PC中点,作EF⊥PB交PB于F求证:1、PA‖平面EDB2、PB⊥平面EFD要求:用空间向量证明.O(∩_∩)O谢谢~
题目详情
已知点P为正方形ABCD外一点,PD⊥平面ABCD,PD=DC,E为PC中点,作EF⊥PB交PB于F
求证:1、PA‖平面EDB
2、PB⊥平面EFD
要求:用空间向量证明.O(∩_∩)O谢谢~
求证:1、PA‖平面EDB
2、PB⊥平面EFD
要求:用空间向量证明.O(∩_∩)O谢谢~
▼优质解答
答案和解析
8.(I)证明:连结AC,AC交BD于O,连结EO.
∵底面ABCD是正方形,∴点O是AC的中点
在 中,EO是中位线,∴PA // EO
而 平面EDB且 平面EDB,
所以,PA // 平面EDB
(II)证明:
∵PD⊥底面ABCD且DC包含于底面ABCD,∴PD⊥BC∵PD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC ①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE包含于平面PDC,∴BC⊥DC②
由①和②推得DE⊥平面PBC.
而PB包含于平面PBC,∴ DE⊥PB
又EF⊥PB且DE并上EF=E ,所以PB⊥平面EFD
累的.仙人的答案.个人补充了答案.给分吧,我不容易的.
∵底面ABCD是正方形,∴点O是AC的中点
在 中,EO是中位线,∴PA // EO
而 平面EDB且 平面EDB,
所以,PA // 平面EDB
(II)证明:
∵PD⊥底面ABCD且DC包含于底面ABCD,∴PD⊥BC∵PD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC ①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE包含于平面PDC,∴BC⊥DC②
由①和②推得DE⊥平面PBC.
而PB包含于平面PBC,∴ DE⊥PB
又EF⊥PB且DE并上EF=E ,所以PB⊥平面EFD
累的.仙人的答案.个人补充了答案.给分吧,我不容易的.
看了 已知点P为正方形ABCD外一...的网友还看了以下:
1.正方形ABCD,E为BD上一点,连接AE并延长交CD于点F,交BC延长线于G,求证AE²=EF 2020-04-27 …
某刑事案件的六个嫌疑分子A,B,C,D,E,F交待了以下材料:AB与F作案;BD与A作案;CB与E 2020-05-16 …
某刑事案件的六个嫌疑分子A,B,C,D,E,F交待了以下材料:某刑事案件的六个嫌疑分子A,B,C, 2020-05-16 …
如图,在三角形ABC中,AC=BC,∠ACB=90度,E为BC的中点,CD⊥AE于F交与D.求证∠ 2020-06-17 …
三角形ABC中,∠A=90°,AB=AC,D为BC的中点,AE⊥BD于F,交BC于E求证角ADB= 2020-06-27 …
已知集合A={x|x>0},B={x|x^2-(a+b)x+ab<0,a,b属于R},D=A交B, 2020-07-12 …
关于java的swap比如有[a,b,c,d,e]5个字母...用swap交换为[d,e,c,a, 2020-07-17 …
某刑事案件的六个嫌疑分子A,B,C,D,E,F交待了以下材料:某刑事案件的六个嫌疑分子A,B,C, 2020-07-29 …
一个三角形ABC,角A为60度,角B角C的角平分线分别交AB于D交AC于E两线交于点F连接D,E有 2020-07-30 …
如图,Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB的外角平分线CF相交于点D, 2021-01-02 …