早教吧作业答案频道 -->数学-->
在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,PH为三角形PAD边上的高 2)若PH=1,AD=根号2,FC=1,求三棱锥E-BCF的体积,3)、证明:EF⊥平面PAB 答得
题目详情
在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,PH为三角形PAD边上的高 2)若PH=1,AD=根号2,FC=1,求三棱锥E-BCF的体积,3)、证明:EF⊥平面PAB 答得好50分
▼优质解答
答案和解析
我只知道第二问
取AB中点M,连结EM、MF,
AM=AB/2,
∵CD//AB,
DF=AB/2=ME,
∴四边形ADFM是平行四边形,(一组对边平行且相等的四边形是平行四边形),
∴MF//AD,
∵ME是△PAB的中位线,
∴EM//PA,
∵PA∩AD=A,EM∩MF=M,
∴平面EMF//平面PAD,
∵AB⊥平面PAD,
∴AB⊥平面EMF,
∵EF∈平面EFM,
∴EF⊥AB,
取PA中点N,连结DN、EN,
则EN是△PBA的中位线,
∴EN//AB,EN=AB/2=AM=DF,
∵CD//AB,
∴EN//DF,EN=DF,
∴四边形FDNE是平行四边形,
∴EF//DN,
∵DP=DA,(已知),DN是AP边上的中线,
∴DN⊥PA,(等腰△三线合一),
∴EF⊥PA,
∵PA∩AB=A,
∴EF⊥平面PAB.
取AB中点M,连结EM、MF,
AM=AB/2,
∵CD//AB,
DF=AB/2=ME,
∴四边形ADFM是平行四边形,(一组对边平行且相等的四边形是平行四边形),
∴MF//AD,
∵ME是△PAB的中位线,
∴EM//PA,
∵PA∩AD=A,EM∩MF=M,
∴平面EMF//平面PAD,
∵AB⊥平面PAD,
∴AB⊥平面EMF,
∵EF∈平面EFM,
∴EF⊥AB,
取PA中点N,连结DN、EN,
则EN是△PBA的中位线,
∴EN//AB,EN=AB/2=AM=DF,
∵CD//AB,
∴EN//DF,EN=DF,
∴四边形FDNE是平行四边形,
∴EF//DN,
∵DP=DA,(已知),DN是AP边上的中线,
∴DN⊥PA,(等腰△三线合一),
∴EF⊥PA,
∵PA∩AB=A,
∴EF⊥平面PAB.
看了 在四棱锥P-ABCD中,AB...的网友还看了以下:
已知a是3个正数a.b.c中最大的数,且a/b=c/d,则a+d于c+d的大小关系是?(则a+d于c 2020-03-31 …
如图甲所示,再两块相距d=50cm的平行金属板A、B间接上U=100V的矩形交变电压,如图乙所示在 2020-04-06 …
采购员用一张1万元支票去购物.购单价为590元的A种物品若干件,又购单价为670元的B种物品若干件 2020-04-07 …
下面程序段的执行结果是#defineprt(a,b)if(!a)b=amain(){intx=1, 2020-04-26 …
把下面的式子写成(A+B)(A-B)的形式(1)(a+b+c+d)(-a-b+c+d)(2)(把下 2020-04-27 …
已知a/b=c/d=e/f=2,当b+d≠0时,a+c/b+d=;当b+d+f≠0时,a+c+e/ 2020-05-14 …
When you read a text, you'd better make a mark___ 2020-05-16 …
行列式性质2的证明看不懂具体内容在这里:这个证明看着晕,想不能换行之前,应该是:D=(-1)^t* 2020-05-17 …
哪位好心人帮我回答两道一元一次方程题1.若a,c,d是整数,b是正整数,且满足a+b=c,b+c= 2020-05-21 …
如下表,a,b,c,d,e,f均为有理数.表中各行各列、两对角线上三个数之和都相等,试计算(d分之 2020-05-23 …