早教吧作业答案频道 -->数学-->
在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,PH为三角形PAD边上的高 2)若PH=1,AD=根号2,FC=1,求三棱锥E-BCF的体积,3)、证明:EF⊥平面PAB 答得
题目详情
在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点,且DF=1/2AB,PH为三角形PAD边上的高 2)若PH=1,AD=根号2,FC=1,求三棱锥E-BCF的体积,3)、证明:EF⊥平面PAB 答得好50分
▼优质解答
答案和解析
我只知道第二问
取AB中点M,连结EM、MF,
AM=AB/2,
∵CD//AB,
DF=AB/2=ME,
∴四边形ADFM是平行四边形,(一组对边平行且相等的四边形是平行四边形),
∴MF//AD,
∵ME是△PAB的中位线,
∴EM//PA,
∵PA∩AD=A,EM∩MF=M,
∴平面EMF//平面PAD,
∵AB⊥平面PAD,
∴AB⊥平面EMF,
∵EF∈平面EFM,
∴EF⊥AB,
取PA中点N,连结DN、EN,
则EN是△PBA的中位线,
∴EN//AB,EN=AB/2=AM=DF,
∵CD//AB,
∴EN//DF,EN=DF,
∴四边形FDNE是平行四边形,
∴EF//DN,
∵DP=DA,(已知),DN是AP边上的中线,
∴DN⊥PA,(等腰△三线合一),
∴EF⊥PA,
∵PA∩AB=A,
∴EF⊥平面PAB.
取AB中点M,连结EM、MF,
AM=AB/2,
∵CD//AB,
DF=AB/2=ME,
∴四边形ADFM是平行四边形,(一组对边平行且相等的四边形是平行四边形),
∴MF//AD,
∵ME是△PAB的中位线,
∴EM//PA,
∵PA∩AD=A,EM∩MF=M,
∴平面EMF//平面PAD,
∵AB⊥平面PAD,
∴AB⊥平面EMF,
∵EF∈平面EFM,
∴EF⊥AB,
取PA中点N,连结DN、EN,
则EN是△PBA的中位线,
∴EN//AB,EN=AB/2=AM=DF,
∵CD//AB,
∴EN//DF,EN=DF,
∴四边形FDNE是平行四边形,
∴EF//DN,
∵DP=DA,(已知),DN是AP边上的中线,
∴DN⊥PA,(等腰△三线合一),
∴EF⊥PA,
∵PA∩AB=A,
∴EF⊥平面PAB.
看了 在四棱锥P-ABCD中,AB...的网友还看了以下:
立体几何11、平行六面体ABCD-A1B1C1D1各棱长都等于4,体积为V,在AA1上取AP=1, 2020-05-13 …
四棱锥P-ABCD的底面是正方形.在线等 速度~四棱锥P-ABCD的底面是正方形 PA⊥底面ABC 2020-05-16 …
四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.已知PB‖平面AE四 2020-05-16 …
如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上,(1)求证平面AEC如 2020-05-17 …
三棱锥ABCD中EG分别是BC,AB中点,F在CD上.DF:FC=DH:HA=2:3三棱锥ABCD 2020-05-22 …
三棱锥的一条侧棱长为4,其余所有棱长都等于3,求棱锥体积 2020-06-04 …
1.围成圆图-等立体图形的面是平的面,象这样的立体图形,又称为---.2.装着足球的网兜能否看成是 2020-06-10 …
如下图所示,观察四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是圆台C.(3)是棱锥D 2020-07-25 …
立方体图形有九个面的是:1.六棱柱2.八棱柱3.八棱锥4.六棱锥 2020-07-31 …
已知六棱柱的底面周长为4,高为3根号3,则棱锥的体积为? 2020-07-31 …