早教吧作业答案频道 -->数学-->
设M是由满足下列性质的函数f(x)构成的集合:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.已知下列函数:① f(x)=1/x;②f(x)=2的x次方;③f(x)=lg(x²+2);④f(x)=cosπx,其
题目详情
设M是由满足下列性质的函数f(x)构成的集合:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.已知下列函数:① f(x)=1/x;②f(x)=2的x次方;③f(x)=lg(x²+2);④f(x)=cosπx,其中属于集合M的函数是 ②④(写出所有满足要求的函数的序号).
为什么是②对的?2的x次方×2=2的(x+1)次方吧?怎么可以2的x次方+2=2的(x+1)次方?
为什么是②对的?2的x次方×2=2的(x+1)次方吧?怎么可以2的x次方+2=2的(x+1)次方?
▼优质解答
答案和解析
①中,若存在x,使f(x+1)=f(x)+f(1)
则 1/x+1=(1/x)+1
即x2+x+1=0,
∵△=1-4=-3<0,故方程无解.即 f(x)=(1/x)∉M
②中,存在x=1,使f(x+1)=2x+1=f(x)+f(1)=2x+2成立,即f(x)=2x∈M;
③中,若存在x,使f(x+1)=f(x)+f(1)
则lg[(x+1)2+2]=lg(x2+2)+lg3
即2x2-2x+3=0,
∵△=4-24=-20<0,故方程无解.即f(x)=lg(x2+2)∉M
④存在x= 1/3,使f(x+1)=cosπ(x+1)=f(x)+f(1)=cosπx+cosπ成立,即f(x)=cosπx∈M;
②④
则 1/x+1=(1/x)+1
即x2+x+1=0,
∵△=1-4=-3<0,故方程无解.即 f(x)=(1/x)∉M
②中,存在x=1,使f(x+1)=2x+1=f(x)+f(1)=2x+2成立,即f(x)=2x∈M;
③中,若存在x,使f(x+1)=f(x)+f(1)
则lg[(x+1)2+2]=lg(x2+2)+lg3
即2x2-2x+3=0,
∵△=4-24=-20<0,故方程无解.即f(x)=lg(x2+2)∉M
④存在x= 1/3,使f(x+1)=cosπ(x+1)=f(x)+f(1)=cosπx+cosπ成立,即f(x)=cosπx∈M;
②④
看了 设M是由满足下列性质的函数f...的网友还看了以下:
已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f 2020-03-30 …
已知函数f(x)及其导数f′(x),若存在x0,使得f′(x0)=f(x0),则称x0是f(x)的 2020-05-14 …
设M是由满足下列性质的函数f(x)构成的集合:在定义域内存在x0,使得f(x0+1)=f(x0)+ 2020-05-16 …
设函数f(x)的定义域为R,有下列三个命题:①若存在常数M,使得对任意x∈R,有f(x)≤M,则M 2020-05-19 …
对于定义域为R的函数f(x),若存在非零实数x0,使函数f(x)在(-∞,x0)和(x0,+∞)上 2020-06-06 …
已知函数f(x)=2^x-log1/2x且实数a>b>c>0满足f(a)·f(b)·f(c)<0, 2020-07-09 …
已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(-x)≠f 2020-07-20 …
函数的最值设函数f(x)的定义域为R,则下列四个命题:(1)若存在常数M,使得对于任意的x∈R,有 2020-07-25 …
导函数定义如何理解导函数定义设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x 2020-07-31 …
已知函数y=f(x),下列说法错误的是()A.△y=f(x0+△x)-f(x0)叫函数值的改变量B. 2020-11-01 …