早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在四边形ABCD中,AB=CD,P,Q分别是AD,BC的中点,M,N分别是对角线AC,BD的中点,证明PQ⊥Mn

题目详情
在四边形ABCD中,AB=CD,P,Q分别是AD,BC的中点,M,N分别是对角线AC,BD的中点,证明PQ⊥Mn
▼优质解答
答案和解析
在四边形ABCD中,AB=CD,P,Q分别是AD,BC的中点,M,N分别是对角线AC,BD的中点,证明PQ⊥MN.
证 连PM,PN,QM,QN.由三角形中位线定理得:
PM=QN=CD/2; PN=QM=AB/2.
而AB=CD.所以PM=PN=QM=QN,故四边形PMQN是菱形.
因为菱形的对角线互相垂直,故PQ⊥MN.