早教吧作业答案频道 -->数学-->
数学几何证明题 (八年级)已知:在△ABC中,AB=AC,∠A=120°,点M为BC边上的中点,点P为BC边上任意一点,过点P作PE⊥AB,过点P作PF⊥AC,连接ME,MF,EF,则△MEF是什么三角形?并说明理由.提示(取中点,利
题目详情
数学几何证明题 (八年级)
已知:在△ABC中,AB=AC,∠A=120°,点M为BC边上的中点,点P为BC边上任意一点,过点P作PE⊥AB,过点P作PF⊥AC,连接ME,MF,EF,则△MEF是什么三角形?并说明理由.
已知:在△ABC中,AB=AC,∠A=120°,点M为BC边上的中点,点P为BC边上任意一点,过点P作PE⊥AB,过点P作PF⊥AC,连接ME,MF,EF,则△MEF是什么三角形?并说明理由.
提示(取中点,利用Rt△斜边中线等于斜边一半)
▼优质解答
答案和解析
一楼是错的
(∵PE⊥AB,PF⊥AC,
∴∠EMF=360°-∠AEP-∠AFP-∠A=60°
你将四边形AEPF和四边形AEMF混起来了)
后面全是抄袭的一楼的.实在让人看不下去了,只好将正确的打出来了
等边三角形结论正确
证明:
连接AM,题意知AM⊥BC
PE⊥AB,
所以AEPM四点共圆
因为PF⊥AC
所以APMF四点共圆
所以AEPMF五点共圆
所以∠EFM=BAM=60,∠FEM=CAM=60
所以∠EFM=∠FEM=60
所以三角形MEF是等边三角形
(∵PE⊥AB,PF⊥AC,
∴∠EMF=360°-∠AEP-∠AFP-∠A=60°
你将四边形AEPF和四边形AEMF混起来了)
后面全是抄袭的一楼的.实在让人看不下去了,只好将正确的打出来了
等边三角形结论正确
证明:
连接AM,题意知AM⊥BC
PE⊥AB,
所以AEPM四点共圆
因为PF⊥AC
所以APMF四点共圆
所以AEPMF五点共圆
所以∠EFM=BAM=60,∠FEM=CAM=60
所以∠EFM=∠FEM=60
所以三角形MEF是等边三角形
看了 数学几何证明题 (八年级)已...的网友还看了以下:
1.已知:P={0,1},M={x/x包含于P},则P与M的关系为A.P∈M B.P不属于M C. 2020-05-13 …
若集合M={x丨-3≤x≤4},集合P={x丨2m-1≤x≤m+1}.(1)证明:M与P不可能相等 2020-06-12 …
数学位置与坐标已知点p(2-m,3m+6),且点p到俩坐标轴的距离相等,求点p的坐标已知点p(m- 2020-06-30 …
已知m,n,p为正整数,m<n.设A(-m,0),B(n,0),C(0,p),O为坐标原点.若∠A 2020-07-16 …
已知m,n,p为正整数,m<n.设A(-m,0),B(n,0),C(0,p),O为坐标原点.若∠A 2020-07-24 …
已知圆M(M为圆心)的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过 2020-07-26 …
几何分布无记忆性证明中证:P{x=m+n|x>m}=P(X=m+n,x>m)/P{x>m}=P(X= 2020-10-31 …
已知抛物线已知AB是抛物线y^2=2px(p>0)的任意一条过焦点的弦,若弦AB被焦点F分成长为m, 2020-10-31 …
已知abc两两相互独立,求证P(a交b交c)=p(a)p(b)p(c)已知ab相互独立,求证a已知a 2020-12-01 …
排列证明:P(m,n)=P(k,n)P(m-k,n-k)P(m,n)=n!/(n-m)!P(k,n) 2020-12-05 …