早教吧作业答案频道 -->数学-->
数学几何证明题 (八年级)已知:在△ABC中,AB=AC,∠A=120°,点M为BC边上的中点,点P为BC边上任意一点,过点P作PE⊥AB,过点P作PF⊥AC,连接ME,MF,EF,则△MEF是什么三角形?并说明理由.提示(取中点,利
题目详情
数学几何证明题 (八年级)
已知:在△ABC中,AB=AC,∠A=120°,点M为BC边上的中点,点P为BC边上任意一点,过点P作PE⊥AB,过点P作PF⊥AC,连接ME,MF,EF,则△MEF是什么三角形?并说明理由.
已知:在△ABC中,AB=AC,∠A=120°,点M为BC边上的中点,点P为BC边上任意一点,过点P作PE⊥AB,过点P作PF⊥AC,连接ME,MF,EF,则△MEF是什么三角形?并说明理由.
提示(取中点,利用Rt△斜边中线等于斜边一半)
▼优质解答
答案和解析
一楼是错的
(∵PE⊥AB,PF⊥AC,
∴∠EMF=360°-∠AEP-∠AFP-∠A=60°
你将四边形AEPF和四边形AEMF混起来了)
后面全是抄袭的一楼的.实在让人看不下去了,只好将正确的打出来了
等边三角形结论正确
证明:
连接AM,题意知AM⊥BC
PE⊥AB,
所以AEPM四点共圆
因为PF⊥AC
所以APMF四点共圆
所以AEPMF五点共圆
所以∠EFM=BAM=60,∠FEM=CAM=60
所以∠EFM=∠FEM=60
所以三角形MEF是等边三角形
(∵PE⊥AB,PF⊥AC,
∴∠EMF=360°-∠AEP-∠AFP-∠A=60°
你将四边形AEPF和四边形AEMF混起来了)
后面全是抄袭的一楼的.实在让人看不下去了,只好将正确的打出来了
等边三角形结论正确
证明:
连接AM,题意知AM⊥BC
PE⊥AB,
所以AEPM四点共圆
因为PF⊥AC
所以APMF四点共圆
所以AEPMF五点共圆
所以∠EFM=BAM=60,∠FEM=CAM=60
所以∠EFM=∠FEM=60
所以三角形MEF是等边三角形
看了 数学几何证明题 (八年级)已...的网友还看了以下:
已知,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于点 2020-05-13 …
已知,如图一,在RT△ACB中,∠C=90°,AC=4CM,BC=3CM,点P由B出发沿BA方向向 2020-06-05 …
如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.1点(1)如果点P在线段 2020-06-13 …
如图已知点abcde在同一直线上,且AC等于BD,E是线段BC的中点.(1)点e是如图已知点abc 2020-06-15 …
(本小题满分12分)如图(1)在Rt△ACB中,∠C=90°AC=4cmBC=3cm点P由B出发沿 2020-07-20 …
如图,在平面直角坐标系中,已知C(2,4),在x轴的负半轴上取点A(m-3,0),在x轴的正半轴上 2020-07-22 …
在直角坐标系中三角形ABC满足:角C=90°AC=2BC=1点AC分别在x轴y轴上当点A从原点开始 2020-07-24 …
如图,在Rt三角形ABC中,角C=90°AC=8cm,BC=6cm.若点p由B出发沿BA方向向A作 2020-07-30 …
(2013•天桥区一模)如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由 2020-12-09 …
急切在RtΔABC中,∠C=90',AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动 2020-12-19 …