早教吧作业答案频道 -->数学-->
在三角形ABC中,a2=b(b+c)是A=2B的什么条件?(
题目详情
在三角形ABC中,a2=b(b+c)是A=2B的什么条件?(
▼优质解答
答案和解析
此题为正弦定理的综合应用,要点是角化边或边化角
具体证明过程如下:
1.充分性
因为 A=2B
所以 sinC=sin(A+B)=sin3B
所以(sinB+sinC)/sinA=[1-(sinB)^2+3(cosB)^2)]/2cosB=2cosB
此处用到了正弦三倍角公式:sin3B=-(sinB)^3+3sinB(cosB)^2
因为 sinA/sinB=2sinBcosB/sinB=2cosB=(sinB+sinC)/sinA
所以 a/b=(b+c)/a
所以 a^2=b*(b+c)
2.必要性
因为 a^2=b(b+c),s (sinA)^2=(sinB)^2+sinBsin(A+B)
所以 (sinA+sinB)(sinA-sinB)=sinBsin(A+B)
所以 4sin[(A+B)/2]*cos[(A-B)/2]*cos[(A+B)/2]*sin[(A-B)/2]=sinBsin(A+B)
此处用到了和差化积的公式:
sinA+sinB=2sin[(A+B)/2]*cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]*sin[(A-B)/2]
所以 sin(A+B)sin(A-B)=sinBsin(A+B)
所以 sin(A-B)=sinB
所以 A=2B
证明完毕
希望能够帮到你.
具体证明过程如下:
1.充分性
因为 A=2B
所以 sinC=sin(A+B)=sin3B
所以(sinB+sinC)/sinA=[1-(sinB)^2+3(cosB)^2)]/2cosB=2cosB
此处用到了正弦三倍角公式:sin3B=-(sinB)^3+3sinB(cosB)^2
因为 sinA/sinB=2sinBcosB/sinB=2cosB=(sinB+sinC)/sinA
所以 a/b=(b+c)/a
所以 a^2=b*(b+c)
2.必要性
因为 a^2=b(b+c),s (sinA)^2=(sinB)^2+sinBsin(A+B)
所以 (sinA+sinB)(sinA-sinB)=sinBsin(A+B)
所以 4sin[(A+B)/2]*cos[(A-B)/2]*cos[(A+B)/2]*sin[(A-B)/2]=sinBsin(A+B)
此处用到了和差化积的公式:
sinA+sinB=2sin[(A+B)/2]*cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]*sin[(A-B)/2]
所以 sin(A+B)sin(A-B)=sinBsin(A+B)
所以 sin(A-B)=sinB
所以 A=2B
证明完毕
希望能够帮到你.
看了 在三角形ABC中,a2=b(...的网友还看了以下:
如果三角形的三边长满足a²+b²=c²,则三角形为直角三角形.如果三边满足a²+b²>c²或a²+ 2020-06-08 …
1.△ABC中,角A:角B:角C=1:2:3,求这个三角形的三边比a:b:c1.△ABC中,角A: 2020-06-12 …
在三角形中,A和B满足关系式1/tanAtanB>0,此三角形的形状是A锐角三角形B钝在三角形中, 2020-06-29 …
如果三角形三边的长a、b、c满足a+b+c3=b,那么我们就把这样的三角形叫做“匀称三角形”,如: 2020-07-09 …
如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为"倍角三角形".对于任意的倍角三 2020-07-19 …
三角形ABC的3个内角角A、角B、角C满足以下条件:3倍的角A大于5倍的角B,2倍的角B大于等于3 2020-07-30 …
(2)已知A=45°,a=2,b=根号6,求B(4)已知a=6,b=7,c=8,试判断三角形ABC 2020-07-30 …
三角形面积公式设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角 2020-07-31 …
余弦定理在三角形ABC中,若a方>b方+c方,则这个三角形是什么三角形?三角形的三边之比为3:5: 2020-08-02 …
在有理数的原有运算法则中,我们补充并定义新运算三角如下:当a大于等于b时,a三角b=b的平方,当a小 2021-01-20 …