早教吧作业答案频道 -->数学-->
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C(1)求抛物线的解析式;(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;(3)在(
题目详情
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)把 x = 1 y = 0 代入 y=x2+bx-3a 得:1 + b -- 3a = 0
把 x = 0 y = -- 3 代入 y=x2+bx-3a 得:-- 3a = -- 3
∴ b = 3a -- 1 = 3 -- 1 = 2
∴抛物线的解析式为:y = x2 + 2x -- 3
( 把--3a看作 整体,不必专门求a值)
(2)把抛物线的解析式变为:y = (x -- 1)(x + 3)
令(x -- 1)(x + 3)= 0 得抛物线与x轴的另一交点C坐标为:(--3 ,0)
把把抛物线的解析式变为:y =(x + 1)2 -- 4
知 抛物线de对称轴为 x = -- 1,最小值为 -- 4,顶点坐标为:N (--1,-- 4).
∵ C坐标为(--3,0)、B坐标为( 0,--3)
∴ △OBC是等腰直角三角形,且斜边BC=3√2,则BC的平方= 18.
∵ N坐标为(--1,-- 4)、B坐标为( 0,--3),作NH ⊥ y轴于H,
则 △BNH 是等腰直角三角形,且斜边BN=√2,则BN的平方= 2.
设 对称轴 x = -- 1 与 x轴交于点M,则MC=2,MN=4.
在Rt△MCN 中,NC的平方 = MC的平方 + MN的平方
∴ NC 的平方 = 20
又 ∵ BC的平方 + BN的平方 = 18 + 2 = 20
∴ BC的平方 + BN的平方 = NC 的平方
∴ △BCN 是Rt△,且是以点B为直角顶点的直角三角形.
∴满足题意的 点P的位置应在点N处,此时点P的坐标为(-- 1,-- 4)..
(3)在(2)的条件下,在抛物线上存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形,满足题意的点Q坐标为(-- 2,-- 3).
我们知道,两直线 y1 = k1 x + b1 与 y2 = k2 x + b2 平行的时候,k1 = k2.
∵C坐标为(--3,0)、B坐标为( 0,--3)
∴ 易求得 直线BC的解析式为:y = -- x -- 3.
过P(-- 1,-- 4)作 直线BC的平行线并设其解析式为y = -- x + b
求直线BC 与 抛物线 的交点,
需联立方程组y = -- x + b
y = x2 + 2x -- 3
解得:x = -- 2 ,y = -- 3 (另一组解x= --1,y= -- 4 表示P点坐标)
∴满足题意的点Q坐标为(-- 2,-- 3).
注:第三问,题目让求作“直角梯形”,注意从∠CBP = 90° 进行突围!
第三问,满足题意的点Q 只有以上一种情形.
把 x = 0 y = -- 3 代入 y=x2+bx-3a 得:-- 3a = -- 3
∴ b = 3a -- 1 = 3 -- 1 = 2
∴抛物线的解析式为:y = x2 + 2x -- 3
( 把--3a看作 整体,不必专门求a值)
(2)把抛物线的解析式变为:y = (x -- 1)(x + 3)
令(x -- 1)(x + 3)= 0 得抛物线与x轴的另一交点C坐标为:(--3 ,0)
把把抛物线的解析式变为:y =(x + 1)2 -- 4
知 抛物线de对称轴为 x = -- 1,最小值为 -- 4,顶点坐标为:N (--1,-- 4).
∵ C坐标为(--3,0)、B坐标为( 0,--3)
∴ △OBC是等腰直角三角形,且斜边BC=3√2,则BC的平方= 18.
∵ N坐标为(--1,-- 4)、B坐标为( 0,--3),作NH ⊥ y轴于H,
则 △BNH 是等腰直角三角形,且斜边BN=√2,则BN的平方= 2.
设 对称轴 x = -- 1 与 x轴交于点M,则MC=2,MN=4.
在Rt△MCN 中,NC的平方 = MC的平方 + MN的平方
∴ NC 的平方 = 20
又 ∵ BC的平方 + BN的平方 = 18 + 2 = 20
∴ BC的平方 + BN的平方 = NC 的平方
∴ △BCN 是Rt△,且是以点B为直角顶点的直角三角形.
∴满足题意的 点P的位置应在点N处,此时点P的坐标为(-- 1,-- 4)..
(3)在(2)的条件下,在抛物线上存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形,满足题意的点Q坐标为(-- 2,-- 3).
我们知道,两直线 y1 = k1 x + b1 与 y2 = k2 x + b2 平行的时候,k1 = k2.
∵C坐标为(--3,0)、B坐标为( 0,--3)
∴ 易求得 直线BC的解析式为:y = -- x -- 3.
过P(-- 1,-- 4)作 直线BC的平行线并设其解析式为y = -- x + b
求直线BC 与 抛物线 的交点,
需联立方程组y = -- x + b
y = x2 + 2x -- 3
解得:x = -- 2 ,y = -- 3 (另一组解x= --1,y= -- 4 表示P点坐标)
∴满足题意的点Q坐标为(-- 2,-- 3).
注:第三问,题目让求作“直角梯形”,注意从∠CBP = 90° 进行突围!
第三问,满足题意的点Q 只有以上一种情形.
看了 如图,已知抛物线y=x2+b...的网友还看了以下:
A ,B ,C 三点为一直角三角形的三个顶点,角B 为30度.现在A 、B两点放置两点电荷Qa、Q 2020-04-05 …
直角三角形ABC中,若角C=90度,AC=4,BC=3,AD平分角CAB,交BC于点D,点P是边A 2020-05-14 …
A、B、C、三点为一直角三角形的三个顶点,角B为30°.在A、B两点放置两点电荷qA,qB,测得C 2020-05-20 …
已知三角形abc中ad垂直bc于点d,e为bc的中点角b等于二倍角c求证de等于二分之一ab 2020-05-21 …
如图在角abc中d是bc的延长线上一点角b等于40度角acd等于120度则角a等于多少度 2020-05-23 …
如图,四边形abcd.点e,f分别是bc,dc上的两点,角b和角d等于90度,角c等于50度,当三 2020-07-17 …
一道初中几何求角度数的问题已知:三角形ABC中,P为BC边上一点,角B=45度,角APC=60度, 2020-07-22 …
关于内切圆的数学题,老师们帮下忙!锐角三角形ABC的内切圆分别切ABAC于EF,D是BC中点角B角 2020-08-01 …
平面坐标几何题求解在直角平面坐标系中,三角形abc的顶点坐标分别是a(1,0),b(-3,0),c 2020-08-02 …
如图所示三角形abc全等于三角形abc,B和E是对应顶点角b等于三十度角acb等于八十五度求三角形 2020-08-02 …