早教吧作业答案频道 -->数学-->
集合a={1,2,3,4,5},b={6,7.8},从a到b的映射f中满足f(1)≤f(2)≤f(3)≤f(4)≤f(5)的映射个数是多少
题目详情
集合a={1,2,3,4,5},b={6,7.8},从a到b的映射f中满足f(1)≤f(2)≤f(3)≤f(4)≤f(5)的映射个数是多少
▼优质解答
答案和解析
设f(x)的值域为6……1
值域为7……1
8……1
值域为67,68,78的话,每个分别有4个.……3*4=12
值域为678的话6和8分别为f(1)和f(5),中间有一个为7.若为f(2)或f(4) 分别有2种,若为f(3)则有4种(改正,有2个重复)
所以一共就是23 (改正21)
其实题目的意思就是说()<=()<=()<=()<=()在括号内填678 3个数字,可以重复可以选1个或2个或3个填
66666 77777 88888 67777 66777 66677 66667 78888 77888 77788 77778
68888 66888 66688 66668 66678 66778 67888 67778 66788 67788
值域为7……1
8……1
值域为67,68,78的话,每个分别有4个.……3*4=12
值域为678的话6和8分别为f(1)和f(5),中间有一个为7.若为f(2)或f(4) 分别有2种,若为f(3)则有4种(改正,有2个重复)
所以一共就是23 (改正21)
其实题目的意思就是说()<=()<=()<=()<=()在括号内填678 3个数字,可以重复可以选1个或2个或3个填
66666 77777 88888 67777 66777 66677 66667 78888 77888 77788 77778
68888 66888 66688 66668 66678 66778 67888 67778 66788 67788
看了 集合a={1,2,3,4,5...的网友还看了以下:
已知定义在R上的f(x)为奇函数,有f(x-4)=-f(x),求周期因为-f(x)=f(-x)所以 2020-04-06 …
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
一道高一期末数学测试题设分段函数f(x)=x²+bx+c(x≤0)或f(x)=c(x大于0),若f 2020-05-22 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
设f(x)在[2,4]上连续可导,f(2)=f(4)=0,证:|∫[2,4]f(设f(x)在[2, 2020-06-18 …
对于正数x,规定f(x)=x/1+x,例如f(3)=3/(1+3)=3/4,f(1/3)=(1/3 2020-07-17 …
如果一个函数f(x)在其定义区间内对任意实数x,y都满足f(x+y2)≤f(x)+f(y)2,则称 2020-07-29 …
如果一个函数f(x)在其定义区间内对任意实数x,y都满足f(x+y2)≤f(x)+f(y)2,则称 2020-07-29 …
若函数f(x)不等于0,且f(x)满足下列三个条件:1.对任意实数a、b,均有f(a-b)=f(a 2020-08-03 …