早教吧作业答案频道 -->数学-->
高中双曲线题如图,直线l:y=根号3(x-2)和双曲线C:/a?-y?/b?=1(a>0,b>0)交于A,B两点,且|AB|=根号3,又l关于直线l1:y=b/ax对称的直线l2与x轴平行(1)求双曲线C的离心率(2)求双曲线C的方程求
题目详情
高中双曲线题
如图,直线l:y=根号3(x-2)和双曲线C:/a?-y?/b?=1(a>0,b>0)交于A,B两点,且|AB|=根号3,又l关于直线l1:y=b/ax对称的直线l2与x轴平行(1)求双曲线C的离心率(2)求双曲线C的方程求详细过程....
如图,直线l:y=根号3(x-2)和双曲线C:/a?-y?/b?=1(a>0,b>0)交于A,B两点,且|AB|=根号3,又l关于直线l1:y=b/ax对称的直线l2与x轴平行(1)求双曲线C的离心率(2)求双曲线C的方程求详细过程....
▼优质解答
答案和解析
(1)直线l:y = √3(x – 2),倾斜角为arctan(√3) = π/3,l关于直线l1:y=bx/a对称的直线l2与x轴平行,因为直线l2的倾斜角为0,所以直线l1的倾斜角为(π/3 + 0)/2 = π/6,所以kl1 = tan(π/6) = b/a,即b/a = √3/3,设b = k(k > 0),则a = √3k,c2 = a2 + b2 = 3k2 + k2 = 4k2 => c = 2k => 双曲线C的离心率e = c/a = 2k/√3k = 2√3/3 ;
(2)设法同(1),所以双曲线C:x2 /a2 – y2 /b2 = 1 => x2 /3k2 – y2 /k2 = 1 => x2 – 3y2 = 3k2,与y = √3(x – 2)联立可得x2 – 3*3(x – 2)2 = 3k2 => 8x2 – 36x + 3k2 + 36 = 0,Δ= 362 – 32(3k2 + 36) = 144 – 96k2 > 0 => 96k2 < 144 => k2 < 3/2 => k∈(0,√6/2),设A(x1,y1),B(x2,y2),由弦长公式可得AB = √(1 + 3)*√(144 – 96k2)/8 = √3*√(3 – 2k2) = √3 => √(3 – 2k2) = 1 => 3 – 2k2 = 1 => 2 = 2k2 => k2 = 1 => k = 1 => 双曲线的方程为x2 /3 – y2 = 1 .
(2)设法同(1),所以双曲线C:x2 /a2 – y2 /b2 = 1 => x2 /3k2 – y2 /k2 = 1 => x2 – 3y2 = 3k2,与y = √3(x – 2)联立可得x2 – 3*3(x – 2)2 = 3k2 => 8x2 – 36x + 3k2 + 36 = 0,Δ= 362 – 32(3k2 + 36) = 144 – 96k2 > 0 => 96k2 < 144 => k2 < 3/2 => k∈(0,√6/2),设A(x1,y1),B(x2,y2),由弦长公式可得AB = √(1 + 3)*√(144 – 96k2)/8 = √3*√(3 – 2k2) = √3 => √(3 – 2k2) = 1 => 3 – 2k2 = 1 => 2 = 2k2 => k2 = 1 => k = 1 => 双曲线的方程为x2 /3 – y2 = 1 .
看了 高中双曲线题如图,直线l:y...的网友还看了以下:
7道线性代数问题1.设a1=(2,2)^T,a2=(1,3)^T,A=(a1,a2),求A^100 2020-04-13 …
已知A(1/3,1/a),B(1/4,1/b),C(1/5,1/c)满足a/(b+c)=1/3,b 2020-05-16 …
1直线a,b,c两两平行,但不共面,经过其中两条直线的平面共有()A1个B3个C0个D6个2直线a 2020-07-09 …
设曲线y=2x^3在点(a,2a^3)的切线与直线x=a,y=0所围成的三角形面积为1/3求a 2020-07-22 …
设a、b是两个不共线是非零向量(t属于R)(1)记OA=a,OB=tb,OC=1/3(a+b),那 2020-07-24 …
设A为三阶方阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α1+α3 2020-07-26 …
设向量a,b是两个不共线的非零向量,(t∈R)(1)若a与b起点相同,t为何值时,a,tb,1/3 2020-08-01 …
(1)如果a1,a2,a3线性无关,而3a1-a2+a3,2a1+a2-a3,a1+ta2+2a3 2020-08-02 …
线性代数问题a=(1,2,3),b=(1,1/2,1/3),设A=aTb,则A的n次方等于? 2020-11-17 …
x-1x+1x-x^1\3-------------+--------------------(用立 2020-11-27 …