早教吧作业答案频道 -->数学-->
例7、设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为0的实数.(1)若求k关于t的函数关系式k=f(t);(2)试确定k=f(t)的单调区间第一小题的问题是,若x=a+(t-3)b与y=-ka+tb垂直
题目详情
例7、设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为0的实数.
(1)若求k关于t的函数关系式k=f(t);
(2)试确定k=f(t)的单调区间
第一小题的问题是,
若x=a+(t-3)b与y=-ka+tb垂直,试求k关于t的函数关系k=f(t)
还有一个问题就是,求f(t)的最小值!
(1)若求k关于t的函数关系式k=f(t);
(2)试确定k=f(t)的单调区间
第一小题的问题是,
若x=a+(t-3)b与y=-ka+tb垂直,试求k关于t的函数关系k=f(t)
还有一个问题就是,求f(t)的最小值!
▼优质解答
答案和解析
(1)因为a、b互相垂直,故ab=0,
又x、y互相垂直,故xy=0,即(a+(t-3)b)(-ka+tb)=0
-ka^2-k(t-3)ab+tab+t(t-3)b^2=0
∵|a|=2,|b|=1,ab=0,a^2=4,b^2=1
∴-4k+t^2-3t=0
即k=f(t)=(t^2-3t)/4
(2)由(1)知,k=1/4(t-3/2)^2-9/16
∴当t=3/2时,函数的最小值为-9/16.
曲线为开口向上对称轴为t=3/2的u形线,(负无穷,3/2)为减区间,[3/2,正无穷)为增区间
又x、y互相垂直,故xy=0,即(a+(t-3)b)(-ka+tb)=0
-ka^2-k(t-3)ab+tab+t(t-3)b^2=0
∵|a|=2,|b|=1,ab=0,a^2=4,b^2=1
∴-4k+t^2-3t=0
即k=f(t)=(t^2-3t)/4
(2)由(1)知,k=1/4(t-3/2)^2-9/16
∴当t=3/2时,函数的最小值为-9/16.
曲线为开口向上对称轴为t=3/2的u形线,(负无穷,3/2)为减区间,[3/2,正无穷)为增区间
看了例7、设平面内两向量a与b互相...的网友还看了以下:
设平面内两向量a与b互相垂直,且a的模等于2,b的模等于1,又k与t两个不同时为0的实数,1.若x 2020-04-08 …
设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为0的实数.(1)若x 2020-04-08 …
请问各位解一道狭义相对论的题,唉,设K1系相对惯性系K以速率u沿x轴正向...请问各位解一道狭义相 2020-04-26 …
(2008•杭州一模)已知向量x=(1,t2-3),y=(-k,t)(其中实数k和t不同时为零), 2020-05-16 …
已知直角坐标系中两点A(K,-2),B(2,T).求下列条件K,T的值,1,点A,B关于X的对称轴 2020-06-12 …
我发现傅里叶变换的巨大错误!先看两条结论:1.x(t)*h(t)的傅里叶级数系数为T·a(k)·b 2020-07-13 …
K系与K’系是坐标轴相互平行的两个惯性系,K’系相对于K系沿OX轴正方向匀速运动.一根刚性尺静止在 2020-07-31 …
线形代数特征向量求出K的值,使得列向量α=(1,k,1)^T是A=(2,1,1;1,2,1;1,1, 2020-11-20 …
例7、设平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为0的实数.(1) 2021-02-05 …
已知平面内两向量a与b互相垂直,且|a|=2,|b|=1,又k与t是两个不同时为零的实数.(1),若 2021-02-05 …